پیش‌بینی عددی نویز میدان‌نزدیک و آکوستیک‌برگشتی حاصل از جت‌صوتی در شرایط‌ کاری مختلف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، واحد نجف‌ آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

2 گروه مهندسی مکانیک، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

چکیده

نویز (صوت) حاصل از جت مافوق‌صوت آشفتۀ خروجی از نازل‌های همگرا یا همگراواگرا اثرات مخربی بر محیط و انسان‌های اطراف دارد. برای جلوگیری از این اثرات مخرب، سازوکارهای تولیدکنندۀ نویز در میدان‌ نزدیک و پشت نازل باید به‌خوبی فهم شود. در این پژوهش یک نازل خفه‌شده و صدای ناشی از آن به‌صورت دوبعدی و با استفاده از رویکرد URANS و مدل آشفتگی k-ε Realizable مطالعه شده است. صدای حاصل از این جت آشفته در میدان نزدیک و پشت نازل با حل معادلۀ ویلیامزهاوکینگز به‌دست آمده است. تأثیر پارامترهای فشار و دمای خروجی از نازل روی نویز حاصل از جت آشفته بررسی شده است. تغییر دما، اثرات قابل توجه‌ای روی لایۀ برشی و طول هستۀ پتانسیل جت دارد. نویز ثبت‌شده در نزدیک دهانۀ نازل و پشت نازل نشان می‌دهد که حضور سلول‌های ضربه‌ای در پلوم جت بر امواج آکوستیکی منتشرشده به‌سمت بالادست اثر داشته است و باعث به‌وجودآمدن نویز پهن‌باند ناشی از سلول ضربه‌ای می‌شود. این نویز برای جت سرد با دمای 300کلوین مقداری در حدود 100دسی‌بل و برای جت گرم با دمای 600کلوین مقداری در حدود 105دسی‌بل دارد. با افزایش فشار نازل به دوبرابر مقدار اولیه، نویز ثبت‌شده به حدود 124دسی‌بل رسیده است.

موضوعات


عنوان مقاله [English]

Numerical Prediction of Near-field Noise and Return Acoustics from Sonic Jets in Different Operating Conditions

نویسندگان [English]

  • Ramin Khoshnevisan 1
  • Sobhan Emami Koopaei 2
1 Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
چکیده [English]

The emitted noise (sound) by turbulent supersonic jet flow coming out from convergent or convergent-divergent nozzles has destructive effects on the environment and humans. To prevent these effects, the noise generation mechanisms should be well studied in the near field and behind the nozzle. In this study, a choked nozzle and its emitted noise are studied in two dimensions using the URANS approach and the k-ε Realizble turbulence model. The noise from the turbulent jet in the near field and behind the nozzle is also obtained by solving the Williams-Hawking equation. The effect of nozzle pressure and temperature on the radiated noise has been investigated. The temperature changes affect the shear layer and the length of the jet potential core. The recorded noise close to the nozzle lip and behind the nozzle indicate that the presence of shock cells in the jet plume affects the acoustic waves propagate upstream. It causes broadband shock cell-associated noise. This noise is about 100 db for a cold jet with a temperature of 300 K and about 105 db for a hot jet with a temperature of 600 K. By increasing the nozzle pressure twice the initial value the noise reaches about 124 db.

کلیدواژه‌ها [English]

  • Turbulent jet
  • Choked nozzle
  • Turbulent mixing noise
  • Broadband shock-associated noise
  • sound pressure level
  1. White F.M., Majdalani J., "Viscous Fluid Flow", Forth Edition, McGraw-Hill LLC, New York, USA, pp. 375-381, (2021).
  2. Falkovich G., "Fluid Mechanics: A Short Course for Physicists", Cambridge University Press, Cambridge, UK, (2011).
  3. Kundu P.K., Cohen I.M., "Fluid Mechanics", Fourth Edition, Academic Press, Elsevier, Inc., Oxford, UK, pp. 381-388, (2008).
  4. Emami S., Jafari H., Mahmoudi Y., "Effects of combustion model and chemical kinetics in numerical modeling of hydrogen-fueled dual-stage HVOF system", Journal of Thermal Spray Technology, Vol. 28, No. 3, pp. 333-345, (2019).
  5. Munday D., Gutmark E., Liu J., Kailasanath K., "Flow structure and acoustics of supersonic jets from conical convergent-divergent nozzles", Physics of Fluids, Vol. 23, No. 11, pp. 116102, (2011).
  6. Needham C.E., "Blast Waves", Springer-Verlag, Berlin Heidelberg, (2010).
  7. Kleiner M., "Acoustics and Audio Technology", 3rd Edition, J. Ross Publishing, USA. (2011).
  8. Tam C.K., "Supersonic jet noise", Annual Review of Fluid Mechanics, Vol. 27, pp. 17-43, (1995).
  9. Schulze J., Sesterhenn J., Schmid P., Bogey C., de Cacqueray N., Berland J., Bailly C., "Numerical simulation of supersonic jet noise", In: Brun C., Juvé D., Manhart M., Munz CD. (eds) Numerical Simulation of Turbulent Flows and Noise Generation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol 104. Springer, Berlin, Heidelberg, pp. 29-46, (2009).
  10. Powell A., "On the mechanism of choked jet noise", Proceedings of the Physical Society, Section B, Vol. 66, No. 12, pp. 1039, (1953).
  11. Morris P., "A model for the structure of jet turbulence as a source of noise", 12th Aerospace Sciences Meeting, 1, (1974).
  12. Tam C.K., Tanna H., "Shock associated noise of supersonic jets from convergent-divergent nozzles", Journal of Sound and Vibration, 81, No. 3, pp. 337-358, (1982).
  13. Ponton M., Seiner J., "The effects of nozzle exit lip thickness on plume resonance", Journal of Sound and Vibration, 154, No. 3, pp. 531-549, (1992).
  14. Shen H., Tam C.K., "Numerical simulation of the generation of axisymmetric mode jet screech tones", AIAA Journal, Vol. 36, No. 10, pp. 1801-1807, (1998).
  15. Khavaran A., Bridges J., "Modelling of fine-scale turbulence mixing noise", Journal of Sound and Vibration, 279, No. 3-5, pp. 1131-1154, (2005).
  16. Bodony D., Ryu J., Ray P., Lele S., "Investigating broadband shock-associated noise of axisymmetric jets using large-eddy simulation", 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), pp. 1216-1226, Cambridge, MA, USA, (2006).
  17. Erwin J.P., Sinha N., "Near and far-field investigations of supersonic jet noise predictions using a coupled LES and FW-H equation method", ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, pp. 91-100, Vancouver, British Columbia, Canada, (2011).
  18. Lo S.C., Aikens K., Blaisdell G., Lyrintzis A., "Numerical investigation of 3-D supersonic jet flows using large-eddy simulation", International Journal of Aeroacoustics, Vol. 11, No.7-8, pp. 783-812, (2012).
  19. Schulze J., Sesterhenn J., "Optimal Control to Reduce Supersonic Jet Noise", In: Dillmann A., Heller G., Kreplin H.P., Nitsche W., Peltzer I. (eds) New Results in Numerical and Experimental Fluid Mechanics VIII. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 121, Springer, Berlin, Heidelberg, pp. 707-714, (2013).
  20. Liu J., Corrigan A.T., Kailasanath K., Heeb N.S., Gutmark E.J., "Numerical study of noise sources characteristics in an underexpanded jet flow", 20th AIAA/CEAS Aeroacoustics Conference, pp. 2604, Atlanta, GA, USA, (2014).
  21. Liu J., Corrigan A.T., Kailasanath K., Heeb N.S., Gutmark E.J., "Numerical study of noise characteristics in overexpanded jet flows", 53rd AIAA Aerospace Sciences Meeting, 0508, Kissimmee, Florida, USA, (2015).
  22. Gojon R., Bogey C., "Numerical study of the flow and the near acoustic fields of an underexpanded round free jet generating two screech tones", International Journal of Aeroacoustics, Vol. 16, No. 7-8, pp. 603-625, (2017).
  23. Karnam A., Baier F., Gutmark E.J., Kailasanath K., "Flow measurement and acoustic investigation of high temperature rectangular jets", 2018 AIAA Aerospace Sciences Meeting, pp. 0260, Kissimmee, Florida, USA, (2018).
  24. Ayupov R.S., Benderskii L., Lyubimov D., "RANS/ILES analysis of the flow pattern and the acoustic characteristics of a supersonic off-design jet at large nozzle pressure ratios", Fluid Dynamics, Vol. 54, pp. 114-122, (2019).
  25. Breen N.P., Ahuja K.K, "Supersonic jet noise source distributions", AIAA Scitech 2020 Forum, pp. 0497, Orlando, FL, USA, (2020).
  26. بهمن جهرمی، ایمان، قربانیان، کاوه، ابراهیمی، محمد، "مطالعه تجربی منابع تولید صوت در جت برخوردی مافوق‌صوت دما بالا به صفحه تخت در مراحل اولیه تشکیل جت"، مهندسی مکانیک مدرس، دوره 17، شماره 2، صفحه 368-359، (1396).
  27. افشاری، عباس، دهقان، علی اکبر، فرمانی، محمد، "بررسی نیمه تحلیلی نویز لبه فرار لایه مرزی آشفته با استفاده از اندازه‌گیری فشار ناپایای سطح"، نشریه مهندسی مکانیک امیرکبیر، دوره 51، شماره 6، صفحه 1270-1253، (1398).
  28. موحدی، علیرضا، دهقان، علی اکبر، دهقان منشادی، مجتبی، "پیش‌بینی نویز آیروآکوستیکی دوردست از مدل ساختمان بلند استاندارد به کمک اندازه‌گیری ناپایای فشار سطحی"، نشریه مهندسی مکانیک امیرکبیر، دوره 52، شماره 7، صفحه 1904-1885، (1399).
  29. Daniel K., Mayo D., Lowe K., Ng W., "Use of thermal nonuniformity to reduce supersonic jet noise", AIAA Journal, 57, No. 10, pp. 4467-4475, (2019).
  30. Prasad C., Morris P., "Effect of fluid injection on turbulence and noise reduction of a supersonic jet", Philosophical Transactions of the Royal Society A, Vol. 377, No. 2159, pp. 20190082, (2019).
  31. Wilcox, D.C. "Turbulence Modeling for CFD", 3rd Edition, La Canada, CA: DCW Industries, Inc,   107-230, (2006).
  32. Shih T.H., Liou W.W., Shabbir A., Yang Z., Zhu J., "A new k-e eddy viscosity model for high reynolds number turbulent flows", Computers & Fluids, Vol. 24, pp. 227-238, (1995).
  33. Thies A.T., Tam C.K., "Computation of turbulent axisymmetric and nonaxisymmetric jet flows using the k-epsilon model", AIAA Journal, Vol. 34, No. 2, pp. 309-316, (1996).
  34. Lighthill M.J., "On sound generated aerodynamically I. General theory", Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 211, No. 1107, pp. 564-587, (1952).
  35. Ansys Fluent Theory Guide, Release 15, ANSYS, Inc. pp. 361-369, (2013).
  36. Kaltenbacher M., "Computational Acoustics", Springer, Cham, pp. 1-33, (2018).
  37. Markesteijn A.P., Gryazev V., Karabasov S.A., Ayupov R.S., Benderskiy L.A., Lyubimov D.A., "Flow and noise predictions of coaxial jets", AIAA Journal, pp. 1-14, (2020).
  38. Davison L., Horie Y., Graham R.A., "Shock Wave and High Pressure Phenomena", Springer Nature, Switzerland, (2008).
  39. Naqavi I.Z., Wang Z.-N., Tucker P.G., Mahak M., Strange P., "Far-field noise prediction for jets using large-eddy simulation and Ffowcs Williams–Hawkings method", International Journal of Aeroacoustics, Vol. 15, No. 8, pp. 757-780, (2016).
  40. Liu J., Corrigan A.T., Kailasanath K., Heeb N.S., Munday D.E., Gutmark E.J., "Computational study of shock-associated noise characteristics using LES", 19th AIAA/CEAS Aeroacoustics Conference, 2199, Berlin, Germany, (2013).
  41. Nastro G., Fontane J., Joly L., "Optimal perturbations in viscous round jets subject to Kelvin–Helmholtz instability", Journal of Fluid Mechanics, 900, pp. 1-25, (2020).
  42. Baier F., Karnam A., Gutmark E.J., Kailasanath K., "High temperature supersonic flow measurements of a rectangular jet exhausting over a flat surface", 2018 AIAA Aerospace Sciences Meeting, pp. 0012, Kissimmee, Florida, USA, (2018).