اثر پارامتر گام بر کرنش و تنش فرایند گنبدی‌کردن انتهای لوله (اسپینینگ) در ساخت مخزن CNG آلومینیمی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مکانیک دانشگاه علم و صنعت ایران

چکیده

مخازن CNG آلومینیمی تقویت‌شده می‌توانند با کاهش وزن و مصرف سوخت خودرو نسبت به مخازن فولادی مزیت ویژه‌ای را ایجاد کنند. گنبدی‌کردن انتهای لوله (اسپینینگ) مرحله‌ای مهم در تولید مخزن CNG بدون درز است. هدف از انجام پژوهش حاضر، شبیه‌سازی انجام این فرایند روی لولۀ آلومینیمی 6061-O در دمای بالا، بررسی اثر گام بر کرنش و تنش پس از انجام گذر اول و همچنین اثر آن بر کل فرایند است. پس از شبیه‌سازی کل فرایند و به‌دست‌آوردن شکل نهایی گنبد، در راستای بررسی اثر گام بر کرنش، کرنش‌های محیطی، محوری و در راستای ضخامت لوله پس از گذر اول، روی مسیرهای مختلف داخلی، میانی و خارجی در کردارهایی گزارش شده است. تغییرات گام، اثر قابل توجهی بر کم‌شدن شیب افزایش قدر مطلق کرنش محیطی، وجود کرنش محوری مثبت در مسیر داخلی و توزیع کرنش در مسیر میانی ندارد. اثر عمدۀ افزایش گام در دیگر کرنش‌های مورد بررسی، یکنواخت‌ترشدن توزیع آن‌هاست. این اثر مطابق با پایداری بیشتر و اعوجاج کمتر در انجام کل فرایند با گام‌های بیشتر است. این پایداری در گذر بالاتر به‌ازای گام‌های مختلف نیز مشاهده شده است. از جهت تنش، تنش پس از برداشتن بار گذر اول به‌ازای گام‌های مختلف بررسی شده است. افزایش گام باعث کاهش بیشینه تنش موجود در لوله پس از جداشدن غلتک از آن بعد از گذر اول می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Feed effect on strain and stress in dome forming (spinning) of a tube in an aluminum CNG vessel manufacturing

نویسندگان [English]

  • Mohammad Sedighi
  • Kamaleddin Naserinejad
School of Mechanical Engineering, Iran University of Science and Technology
چکیده [English]

Aluminum CNG vessels compared with steel ones can lead to lower fuel consumption. Dome forming (spinning) is an important step in seamless CNG vessels fabrication. This paper aims to the process simulation on a 6061-O aluminum tube at an elevated temperature, investigation of feed effect on the stress and strain after the first pass and its effect on the whole of the process. After the whole process simulation and achievement of the final dome shape, to investigate the feed effect on the strain, circumferential, axial and thickness strains after the first pass, on different inner, middle and outer paths of the tube wall are reported in some figures. Feed variation has not a considerable effect on the decrease of increase rate of circumferential strain absolute value and on the strain distribution on the middle path. The primary higher feeds effect on other investigated strains is smoother distribution. This effect is in agreement with a more stable process and less wrinkling at higher feeds. This stability is reported in a higher tested feed in this paper. On the other hand, investigating different feeds shows that the feed increase leads to decrease of maximum stress in the tube after roller separation at the end of the first pass.

کلیدواژه‌ها [English]

  • Spinning
  • Dome forming
  • Aluminum seamless pressure vessel
  • Feed
  1. Lee K. O., Park G. Y., Kwak H. S., and Kim C., "Forming of Dome and Inlet Parts of a High Pressure CNG Vessel by the Hot Spinning Process", Transactions of the Korean Society of Mechanical Engineers A, Vol. 40, pp. 887-894, (2016).
  2. Huang C.-C., Hung J.-C., Hung C., and Lin C. R., "Finite element analysis on neck-spinning process of tube at elevated temperature", The International Journal of Advanced Manufacturing Technology, Vol. 56, pp. 1039-1048, (2011).
  3. Zoghi H., Arezoodar A. F., and Sayeaftabi M., "Effect of feed and roller contact start point on strain and residual stress distribution in dome forming of steel tube by spinning at an elevated temperature", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 226, pp. 1880-1890, (2012).
  4. Xue Z., Ren Y., Luo W., and Ren Y., "Effect of Feed Speed on Aluminum Alloy Pipe Neck-Spinning Process and Deformation Analysis Via Simulation," MATEC Web Conf., Vol. 67, No. 05011, (2016).
  5. Lin Y.-C., Chen J. Y., He D. G., Li X. H., and Yang J., "Marginal-restraint mandrel-free spinning process for thin-walled ellipsoidal heads", Advances in Manufacturing, Vol. 8, pp.189-203, (2020).
  6. Lin Y. C., Qian S. S., Chen X. M., Wang J. Q., Li X. H., and Yang H., "Influences of feed rate and wall thickness reduction on the microstructures of thin-walled Hastelloy C-276 cylindrical parts during staggered spinning", The International Journal of Advanced Manufacturing Technology, Vol. 106, pp. 3809-3821, (2020).
  7. Jianguo Y. and Makoto M., "Effects of indented feed of roller tool on parallel spinning of circular aluminum tube", Journal of Materials Processing Technology, Vol. 128, pp. 274-279, (2002).
  8. Jianguo Y. and Makoto M., "An experimental study on paraxial spinning of one tube end", Journal of Materials Processing Technology, Vol. 128, pp. 324-329, (2002).
  9. Jianguo Y. and Makoto M., "An experimental study on spinning of taper shape on tube end", Journal of Materials Processing Technology, Vol. 166, pp. 405-410, (2005).
  10. Chen M. D., Hsu R.-Q., and Fuh K.-H., "Effects of over-roll thickness on cone surface roughness in shear spinning", Journal of Materials Processing Technology, Vol. 159, pp. 1-8, (2005).
  11. Zhan M., Yang H., J. Zhang H., Y. Xu L., and Ma F., "3D FEM analysis of influence of roller feed rate on forming force and quality of cone spinning", Journal of Materials Processing Technology, Vol. 187–188, pp. 486-491, (2007).
  12. Wang L., Long H., Ashley D., Roberts M., and White P., "Effects of the roller feed ratio on wrinkling failure in conventional spinning of a cylindrical cup", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 225, pp. 1991-2006, (2011).
  13. Jian Z., Shuang Z., Fengsheng L., Lei Z., and Ce-An G., "Numerical simulation and experiment of spinning forming of high strength aluminum alloy tubes", University Politehnica of Bucharest Scientific Bulletin, Series B, Vol. 80, pp. 227-238, (2018).
  14. Roy B. K., Korkolis Y. P., Arai Y., Araki W., Iijima T., and Kouyama J., "Experiments and simulation of shape and thickness evolution in multi-pass tube spinning", Journal of Physics: Conference Series, Vol. 1063, 012087, (2018).
  15. جلیلی ایرج، یوسفیان حسین، صدیقی محمد، کساییان مهدی، "ارائه حل تحلیلی در فرایند شکل دهی چرخشی مخروط های فلزی به روش های کار ایده آل و حد بالایی"، مهندسی مکانیک مدرس، دوره ۱۸ (۸)، ص. ۵۵-۶۰، (1397).
  16. Nakasato S., Kobayashi J., and Itoh G., "Hot spinning formability of aluminum alloy tube", Procedia Manufacturing, Vol. 15, pp. 1263-1269, (2018).
  17. Roy B. K., Korkolis Y. P., Arai Y., Araki W., Iijima T., and Kouyama J., "Experimental and numerical investigation of deformation characteristics during tube spinning", The International Journal of Advanced Manufacturing Technology, Vol. 110, pp. 1851-1867, (2020).
  18. Roy B. K., Korkolis Y. P., Arai Y., Araki W., Iijima T., and Kouyamad J., "A study of forming of thin-walled hemispheres by mandrel-free spinning of commercially pure aluminum tubes", Journal of Manufacturing Processes, Vol. 64, pp. 306-322, (2021).
  19. صدیقی محمد، ناصری نژاد کمال‌الدین، "مدل‌سازی فرایند اسپینینگ مخازن آلومینیمی تحت فشار و بررسی پارامترهای مؤثر"، مجله مدل‌سازی در مهندسی، دوره 17 (56)، ص. 303-312، (1398).
  20. Zoghi H. and Arezoodar A. F., "Finite element study of stress and strain state during hot tube necking process", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 227, pp. 551-564, (2013).
  21. Akkus N. and Kawahara M., "An experimental and analytical study on dome forming of seamless Al tube by spinning process", Journal of Materials Processing Technology, Vol. 173, pp. 145-150, (2006).
  22. Yoshihara S., Mac Donald B., Hasegawa T., Kawahara M., and Yamamoto H., "Design improvement of spin forming of magnesium alloy tubes using finite element", Journal of Materials Processing Technology, Vol. 153–154, pp. 816-820, (2004).
  23. Lexian H. and B. Dariani M., "An analytical contact model for finite element analysis of tube spinning process", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 222, pp. 1375-1385, (2008).
  24. Zoghi H., Fallahi Arezoodar A., and Sayeaftabi M., "Enhanced finite element analysis of material deformation and strain distribution in spinning of 42CrMo steel tubes at elevated temperature", Materials & Design, Vol. 47, pp. 234-242, (2013).
  25. تارنمای اینترنتی گروه عابدی، دی 1398.
  26. Sedighi M. and Rasti M., "An investigation on manufacturing process parameters of CNG pressure vessels", The International Journal of Advanced Manufacturing Technology, Vol. 38, pp. 958-964, (2008).
  27. Davis J. R., "Properties and selection: nonferrous alloys and special-purpose materials", ASM International, (1990).
  28. Mahabunphachai S. and Koç M., "Investigations on forming of aluminum 5052 and 6061 sheet alloys at warm temperatures", Materials & Design (1980-2015), Vol. 31, pp. 2422-2434, (2010).
  29. Lexian H. and Dariani B. M., "Effect of roller nose radius and release angle on the forming quality of a hot-spinning process using a non-linear finite element shell analysis", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 223, pp. 713-722, (2009).
  30. Quigley E. and Monaghan J., "Enhanced finite element models of metal spinning", Journal of Materials Processing Technology, Vol. 121, pp. 43-49, (2002).
  31. ح لکزیان، ب م داریانی، م زارع پور، م زینلی، ا حاج علی، "بررسی اثر شعاع دماغه و زاویه غلتک بر کیفیت فرمینگ در فرایند اسپینینگ لوله با استفاده از یک کد المان محدود غیر خطی"، IAS2009، اصفهان، (1387).
  32. "Abaqus 2017 Documentation, Explicit dynamic analysis", Dassault Systemes.
  33. علی میرزالو ولی، عبدا... زاده گاوگانی میثم، احمدی سیروس، دنیوی علی، "بررسی عوامل مؤثر بر توزیع کرنش در فرایند شکل‌دهی غلتکی مقطع گرد با استفاده از روش طراحی آزمایش‌ها"، نشریه مهندسی مکانیک امیرکبیر، دوره 49 (2)، ص. 413-422، (1396).