حل عددی جابه‌جایی ترکیبی جریان نانوسیال غیرنیوتنی در کانال حاوی موانع

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکدۀ مهندسی مکانیک، دانشگاه گیلان، رشت.

2 گروه مکانیک، واحد رودسر و املش، دانشگاه آزاد اسلامی، رودسر.

چکیده

در این تحلیل جابه‌جایی ترکیبی جریان آرام نانوسیالات با سیال پایۀ غیرنیوتنی (سدیم الگنیت) برپایۀ مدل شبهپلاستیک همراه با نانوذرات اکسید آلومینیم در کانال مستطیلی دوبعدی (با عمق نامحدود) حاوی موانع متعدد مطالعه شده است. دمای سیال ورودی به کانال مستطیلیشکل، یکنواخت و کمتر از دیواره‌ها بوده است و دیواره‌های کانال دارای شرایط دمای ثابتاند. برای حل معادلات پیوستگی، مومنتوم و انرژی به‌صورت عددی از روش حجم محدود با الگوریتم سیمپلر استفاده شده است. در این تحقیق تأثیر تعداد و ارتفاع موانع، کسر حجمی نانوذرات در سیال پایۀ غیرنیوتنی، عدد ریچاردسون و عدد رینولدز بر نرخ انتقال حرارت و افت فشار به‌صورت عدد ناسلت و ضریب اصطکاک بررسی شده است. نتایج نشان می‌دهد که افزایش ذرات جامد آلومینیم در سیال غیرنیوتنی الگنیت سدیم سبب افزایش انتقال حرارت و ضریب اصطکاک در طول کانال می‌شود، همچنین با افزایش عدد رینولدز میزان انتقال حرارت در کانال افزایش می‌یابد. نتایج نشان داد که افزایش ارتفاع موانع ازH/3 به H/2 سبب افزایش 10درصد در عدد ناسلت متوسط و 13درصد در ضریب اصطکاک متوسط خواهد شد. نتایج مطالعات نشان داد که افزایش عدد ریچاردسون سبب کاهش عدد ناسلت و ضریب اصطکاک خواهد شد. افزایش تعداد موانع از ۳ به ۵عدد سبب کاهش5/3درصدی در عدد ناسلت خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical analysis of mix convection of sodium alginate non-Newtonian fluid with 〖Al〗_2 O_3nanoparticle in a channel with block

نویسندگان [English]

  • Kourosh Javaherdeh 1
  • Habib Karimi 2
1 Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran,
2 Department of mechanical engineering, Roudsar and Amlash branch, Islamic Azad University, Roudsar, Iran.
چکیده [English]

In this study, the numerical analysis was studied about mixed convection of sodium alginate (non Newtonian Pseudoplastic fluid) with Nano particle in a two dimensional rectangular channel containing several blocks. The temperature of inlet fluid to the rectangular channel were kept in steady state and fixed temperature that is less than wall temperature. To solve the Continuity, momentum and energy equations, numerical analysis and finite volume method with SIMPLE technique is used. In this study the effect of height and numbers of blocks, volume fraction of nano particle, Richardson number and Reynolds number is investigated on Nusselt number and skin friction coefficient. The results show that increasing of aluminum solid particles in sodium alginate will increase the heat transfer rate and skin friction coefficient in channel length. Also by increasing Reynolds number there is an increase in convection rate through the channel. In addition to the conclusions, increasing the block height from H/3 to H/2 enhance the average Nusselt number by 10% and skin friction coefficient by 13%. It is observed that increasing of Richardson number decreases the Nusselt number and skin friction coefficient. Also changing block number from 3 to 5 decrease Nusselt number about 3.5%.

کلیدواژه‌ها [English]

  • Mixed convection
  • Nano fluid
  • channel with blocks
  • non-Newtonian fluid Sodium Alginate
  1. Karimi, H., Ahmadi Danesh-Ashtiani, H., Aghanajafi, C., "Applying multiple decomposition methods and optimization techniques for achieving optimal cost in mixed materials heat exchanger networks", International Journal of Energy research, Vol. 43, pp. 3711–3722, (2019).
  2. Xuan, Y., Li, Q., "Investigation on convective heat transfer and flow features of Nano fluids", Journal of Heat Transfer, Vol. 125, pp. 151-155, (2003).
  3. Karimi, H.,  Ashtiani, H., Aghanajafi, C., "Study of mixed materials heat exchanger using optimization techniques", Journal of Engineering, Design and Technology, Vol.17 (2) , pp.414-433, (2019).
  4. Choi, S.,  Eastman, J., Li, S., " Anomalously increased effective thermal conductivities of ethylene glycol-based Nano-fluids containing copper Nano-particles", Applied Physics, Vol. 78, pp. 718-720, (2001).
  5. Zhou, X., Jiang, Y., Li, X., " Numerical investigation of heat transfer enhancement and entropy generation of natural convection in a cavity containing nano liquid-metal fluid", International Communications in Heat and Mass Transfer, Vol. 106, pp. 46-54, (2019).
  6. Seyedi, S., Saray, B., Chamkha, A., " Heat and mass transfer investigation of MHD Eyring–Powell flow in a stretching channel with chemical reactions",Physica A: Statistical Mechanics and its Applications, Vol. 544, In press, (2020). https://doi.org/10.1016/j.physa.2019.124109.
  7. Hojjat, M., Bagheri, S., "Thermal conductivity of non-Newtonian Nano fluids: Experimental data and modeling using neural network", International Journal of Heat and Mass Transfer, Vol. 54, pp. 1017-1023, (2011).
  8. Hatami, M., Ganji, D., "Natural convection of sodium alginate (SA) non-Newtonian Nano fluid flow between two vertical flat plates by analytical and numerical methods", Heat Transfer, Vol. 2, pp. 14-22, (2014).
  9. Yu, Z., Hu, X., Cen, K., " Numerical study of transient buoyancy-driven convective heat transfer of water-based nanofluids in a bottom-heated isosceles triangular enclosure", International Journal of Heat and Mass Transfer, Vol. 54, pp. 526-532, (2011).
  10. Hakan, E., Oztop, F., "Numerical study of natural convection in partially heated rectangular enclosures filled with Nano fluids", International Journal of Heat and Fluid, Vol. 29, pp. 1326-1336, (2008).
  11. Pandiyaraj, P., Gnanavelbabu,  A., Saravanan, P., " Experimental Analysis on Thermal Performance of Fabricated Flat Plate Heat Pipe Using Titanium Dioxide Nanofluid", Materials Today: Proceeding, Vol. 5, pp. 8414-8423, (2018).
  12. Lotfi, Y., Rashidi, A., "Numerical study of forced convective heat transfer of Nano fluids: Comparison of different approaches", International Communications in Heat and Mass Transfer, Vol. 37, pp. 74-78, (2010).
  13. Xu, I., "Fully developed mixed convection flow in a vertical channel filled with nanofluids", International Communications in Heat and Mass Transfer, Vol. 39, pp. 1086-1092, (2012).
  14. Dalia, I.,  Cimpean, S., "Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium", International Journal of Heat and Mass Transfer, Vol. 55,No. 4, pp. 907-914, (2012).

15. سایه‌وند، ح. ا، بصیری پ. "بررسی عددی و تحلیلی اثرات تفرق حرارتی بر انتقال حرارت جریان نانوسیال درون یک کانال". علوم کاربردی و محاسباتی در مکانیک، دوره ۲۹، شماره۲، (2018).

۱۶. سجادی‌فر، س. ع، کریمی‌پور، آ، طغرایی، د. "شبیه‌سازی انتقال حرارت جابه‌جایی اجباری نانوسیال غیرنیوتنی محلول آبی کربوکسی متیل سلولز-اکسید آلومینیم در یک میکرولوله در رژیم لغزشی". علوم کاربردی و محاسباتی در مکانیک، دوره ۲۸، شماره ۱، (2016).

۱۷. کاهانی، م، زینالی هریس، س. موسوی، س. "اثر نسبت انحنا و طول گام لولۀ مارپیچی بر افت فشار و عملکرد حرارتی جریان آرام نانوسیال تیتان/آب". علوم کاربردی و محاسباتی در مکانیک، دوره ۲۵، شماره ۱، (2014).

18. Togun, T.,  Kazi, S., Badarudin, A., "A review of studies on forced natural and mixed heat transfer to fluid and Nano fluid flow in an annular passage", Renewable and Sustainable Energy Reviews, Vol. 39,  pp. 835-856, (2014).

19. Karimipour, A., D'Orazio, A., Shadloo, M., "The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump",Physica E: Low-dimensional Systems and Nanostructures, Vol. 86, pp. 146-153, (2017).

20. Anirudh, K., Dhinakaran, S., "Performance improvement of a flat-plate solar collector by inserting intermittent porous blocks", Renewable Energy, Vol. 145, pp. 428-441, (2020).

21. Yu, Y., Zhang, J., Shan, Y., "Convective heat transfer of a row of air jets impingement excited by triangular tabs in a confined crossflow channel",International Journal of Heat and Mass Transfer, Vol. 80, pp. 126-138, (2015).

22. Guerroudj, H., "Mixed convection in a channel provided with heated porous blocks of various shapes", Energy Conversion and Management, Vol. 51, pp. 505-517, (2010).

23. Promvonge, S., Kwankaomeng, S., "Laminar periodic flow and heat transfer in square channel with 45_ inline baffles on two opposite walls", International Journal of Thermal Sciences, Vol. 49 pp. 963-975, (2010).

24. Promvonge, S., Tamna, S., Thianpong, C., "Numerical investigation of laminar heat transfer in a square channel with 45° inclined baffles", International Communications in Heat and Mass Transfer, Vol. 37, pp. 170-177, (2010).

25. Kumar, T., Kumar, S., "Performance analysis on heat transfer characteristics of heat SINK with baffles attachment", International Journal of Thermal Sciences, Vol. 142, pp. 14-19, (2019)

26. Esfe, M., Arani, A., Niroumand, A., Yan, W., " Mixed convection heat transfer from surface-mounted block heat sources in a horizontal channel with nanofluids",International Journal of Heat and Mass Transfer, Vol. 89, pp.783-791, (2015).

27. Targui, H., "Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow", Energy Conversion and Management, Vol. 76, pp. 43-54, (2013).

28. Ahmed, N., Yusoff, M., "Numerical investigations on the heat transfer enhancement in a wavy channel using Nano fluid", International Journal of Heat and Mass Transfer, Vol. 55, pp. 5891-5898, (2012).

29. Heidary, M., "Heat transfer enhancement in a channel with block(s) effect and utilizing Nano-fluid", International Journal of Thermal Sciences, Vol. 57, pp. 163-171, (2012).

30. Nayak, A., Weigand, B., "Mixing and heat transfer in micro/nano-channel due to charged corrugated surfaces",Applied Thermal Engineering, Vol. 170, pp. 114979, (2020).

31. Pawar, V., "Experimental studies on heat transfer to Newtonian and non-Newtonian fluids in helical coils with laminar and turbulent flow", Experimental Thermal and Fluid Science, Vol. 44, pp. 792-804, (2013).

32. Khalid, W., "CFD studies on natural convection heat transfer of Al2O3-water Nano fluids", Heat Mass Transfer, Vol. 47, pp. 1301-1310, (2011).

33.  Sharma, M., Kristo, S., Corredig, M., "Effect of hydrocolloid type on texture of pureed carrots: Rheological and sensory measures",Food Hydrocolloids, Vol. 63, pp. 478-487, (2017).

34. Bae, C., Halloran, J., "Concentrated suspension-based additive manufacturing – viscosity, packing density, and segregation",Journal of the European Ceramic Society, Vol.39, pp. 4299-4306, (2019).

35. Hatami, M., "Heat transfer and flow analysis for SA-TiO2 non  Newtonian Nano fluid passing through the porous media between two coaxial cylinders", Journal of Molecular Liquids, Vol. 188, pp. 155-161, (2013).

36. Hatami, N., M, Ganji, M., "Forced convection analysis for MHD Al2O3–water Nano fluid flow over a horizontal plate", Journal of Molecular Liquids, Vol. 187, pp. 294-301, (2013).

37. Ahmed, N., Yusoff, M., Al-Falahi, A., "Numerical investigations of flow and heat transfer enhancement in a corrugated channel using Nano fluid", International Communications in Heat and Mass Transfer, Vol. 38, pp. 1368-1375, (2011).

38. Chandra, A., "Laminar free convection from a horizontal semi-circular cylinder to power-law fluids", International Journal of Heat and Mass Transfer, Vol. 55, pp. 2934–2944, (2012).

39. Chhabra, J., "Non-Newtonian Flow and Applied Rheology: Engineering Applications", second ed., Oxford: Butterworth- Heinemann, (2008).