مدل‌سازی فرایند فراصوت لیزری در رژیم دما-ارتجاعی به‌روش اجزای محدود

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکدۀ مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

دراینمقاله،انتشارامواجفراصوتیحاصلازتابشپرتولیزربهسطحیکجسمجامددررژیمدما-ارتجاعی  وتاآستانۀتبخیرمادهبااستفادهازحلکنندهکد-استر(Code-Aster) بهصورتدوبعدیمدل‌سازیشده است. برخلاف مطالعات پیشین، مسئلۀ فراصوت لیزری در دو مرحله و با مش‌ها و گامهای زمانی متفاوت و مورد نیاز هر یک از بخش‌های تحلیلحرارتی و مکانیکی حل شده است که این امر باعث کاهش چشمگیری در زمان محاسباتشده است. انتشار امواج فراصوتی حاصل از تابش لیزر Nd:YAG با طول موج ۵۳۲ نانومتر، خیز پالس 5 نانوثانیه و شدت لیزر حداکثر 10 میلی‌ژول بهصورت تابعی از زمان در کل قطعه محاسبه شده و موج‌های طولی و عرضی حاصل و نیز رفتار حرارتی ماده در اثر تابش پرتو بررسی شده است. زمان انجام محاسبات برای تحلیل‌های مجزای حرارتی و مکانیکی روی رایانهای که برای این کار استفاده شد، جمعاً یکساعت و 55دقیقه بوده است؛ درحالی‌که در تحلیل هم‌زمان، محاسبات حداقل 11ساعت و 29دقیقه طول میکشد. نتایج به‌دست‌آمدهبادادههایآزمایشگاهیوعددیسایرمحققانمقایسهشدهاست. تطابقخوبنتایج،درستیمدل‌سازیراتأیید می‌کند و نشان می‌دهد که کد موجود،رفتار حرارتی و مکانیکی فراصوت لیزری را بهدرستی و با سرعتی بیشتر از روش‌های پیشین محاسبه کرده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Finite Element Modeling of Laser Ultrasonics Process in Thermoelastic Regime

نویسندگان [English]

  • Salman Shamsaei
  • Farhang Honarvar
Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
چکیده [English]

In this paper, the propagation of ultrasonic waves generated by a laser pulse in thermoelastic regime up to the evaporation threshold of the material is modeled in two-dimensions by using the Code-Aster finite element solver. While in previous studies, this problem is solved in one step, in the new approach, we use different meshes and different increment times for modeling each of the thermal and mechanical parts of the problem. This new approach results in significant reduction in computation time. The propagation of ultrasonic waves generated by laser powers of up to 10 mJ with 17 ns pulse duration are modeled as a function of time. Computation time for separate thermal and mechanical analyses on the computer used for this purpose was 1 hour and 55 minutes; while combined analysis of the problem on the same computer takes at least 11 hours and 29 minutes. The resulting longitudinal and transverse waves, as well as the thermal behaviour of the material are then analysed and the results are compared with experimental and numerical data available in the literature. Very good agreement is observed between our simulation results and experimental and numerical results available in the literature which indicates that the laser ultrasonics process is accurately modeled by using the new approach and new finite element solver.

کلیدواژه‌ها [English]

  • Laser
  • Ultrasound
  • Finite Element
  • Code-Aster
  • Nondestructive evaluation
1. Monchalin, J. P., “Laser-Ultrasonics: Principles and Industrial Applications”, in: Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization, chapter 4, edited by Chen, C. H., World Scientific, New Jersey, pp. 79-115, (2007).
2. Stratoudaki, T., Edwards, C., Dixon, S. and Palmer, S. B., “The role of epoxy resin in the mechanism of laser generated ultrasound in carbon fiber reinforced composites”, Proceedings of SPIE 5046 Conference on Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites II, pp. 89-98, Bellingham, WA, USA, (2003).
 3. Davies, S. J., Edwards, C., Taylor, G. S., and Palmer, B. P., “Laser-generated ultrasound: its properties, mechanisms and multifarious applications”, Journal of Physics D: Applied Physics, Vol. 26, No. 3, pp. 329-348, (1993).
4. Ledbetter, H. M., and Moulder, J. C., “Laser-induced Rayleigh waves in aluminum”, Journal of Acoustical Society of America, Vol. 65, No. 3, pp. 840-842, (1979).
5. Viertl, J. R. M., “Frequency spectrum of laser-generated ultrasonic waves”, Journal of Applied Physics, Vol. 51, No. 1, pp. 805-807, (1980).
6. Rudd, M. J., “Ultrasonic nondestructive evaluation using laser transducers”, Review of Progress in Quantitative Nondestructive Evaluation Library of Congress Cataloging in Publication Data, Vol. 2A, pp. 1763-1782, (1983).
7. Aindow, A. M.,  Dewhurst, R. J., Palmer, S. B., and Scruby, C. B., “Laser-based non-destructive testing techniques for the ultrasonic characterization of  subsurface  flaws”, NDT International, Vol. 17, No. 6, pp. 329-335, (1984).
8. Hutchins, D. A., Young, R. P., and Ungar, J., “Laser-Generated ultrasonic waves for the investigation of porous solids”, Ultrasonic Methods in Evaluation of Inhomogeneous Materials NATO ASI Series, Vol. 126, pp. 353-365, (1987).
9. Dewhurst, R. J., and Shan, Q., “Through-transmission ultrasonic imaging of sub-surface defects using non-contact laser techniques”, Optics and Lasers in Engineering, Vol. 16, pp. 163-178, (1992).
10. Royer, D., and Chenu, C., “Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source”, Ultrasonics, Vol. 38, pp. 891-895, (2000).
11. Clorennec, D., Royer, D., and Walaszek, H., “Nondestructive evaluation of cylindrical parts using laser ultrasonics”, Ultrasonics, Vol. 40, pp. 783-789, (2002).
12. Karabutov, A., Devichensky, A., Ivochkin, A., and Lyamshev, M., “Laser Ultrasonic Diagnostics of Residual Stress”, Ultrasonics, Vol. 48, pp. 631-635, (2008).
13. Wu, K. T., Jen, C.K., Kobayashi, M., and Blouin, A., “Integrated Piezoelectric Ultrasonic Receivers for Laser Ultrasound in Non-destructive Testing of Metals”, Journal of Nondestructive Evaluation, Vol. 30, No. 1, pp. 1-8, (2011).
14. Pei, C., Demachi, K., Zhu, H., Fukuchi, T., Koyama, K., and Uesaka, M., “Inspection of Cracks Using Laser-Induced Ultrasound with Shadow Method: Modeling and Validation”, Optics & Laser Technology, Vol. 44, pp. 860-865, (2012).
15. Reese, S. J., Utegulov, Z. N., Farzbod, F., Schley, R. S., and Hurley, D. H., “Examination of the epicentral waveform for laser ultrasound in the melting regime”, Ultrasonics, Vol. 53, pp. 799-802, (2013).
16. Every, A. G., Utegulov, Z. N., and Veres, I. A., “Laser Thermoelastic Generation in Metals above the Melt Threshold”, Journal of Applied Physics, Vol. 114, No. 20, pp. 203508, (2013).
17. Wang, J. S., Cheng, Y., Xu, X. D., and Liu, X. J., “Laser-Ultrasonic Investigation on Lamb Waves in Two-Dimensional Phononic Crystal Plates”, International Journal of Thermophysics, Vol. 36, No. 5-6, pp. 1195-1201, (2015).
18. Qiu, Q., and Lau, D., “The sensitivity of acoustic-laser technique for detecting the defects in CFRP-Bonded concrete systems”, Journal of Nondestructive Evaluation, Vol. 35, (2016).
19. Ruipeng, G., Haitao, W., and Jianyan, Z., “Non-contact detection of low carbon steel using laser generated ultrasound at high temperature”, Optik, Vol. 136, pp. 536-542, (2017).
20. Casalino, G., Moradi, M., Moghadam. M. K., Khorram, A., and Perulli, P., “Experimental and numerical study of AISI 4130 steel surface hardening by pulsed Nd: YAG laser”, Materials, Vol. 12, 3136, (2019).
21. Moradi, M., Moghadam, M. K., Shamsborhan, M., Beiranvand, Z. M., Rasouli, A., Vahdati, M., Bakhtiari, A. and Bodaghi, M., “Simulation, statistical modeling, and optimization of CO2 laser cutting process of polycarbonate sheets” Optik – International Journal for light and electron optics, Vol. 225, 164932, (2020).
22. Ji, B., Zhang, Q., Cao, J., Zhang, B. and Zhang, L., “Delamination detection in bimetallic composite using laser ultrasonic bulk waves”, Applied Sciences, Vol. 11, 636, (2021).
23. Liu, P., Nazirah, A. W., and Sohn, H., “Numerical simulation of damage detection using laser-generated ultrasound”, Ultrasonics, Vol. 69, pp. 248-258, (2016).
24. Zhang, K., Zhou, Z., Zhou, J., Sun, G., “Characteristics of laser ultrasound interaction with multi-layered dissimilar metals adhesive interface by numerical simulation”, Applied Surface Science, Vol. 353, pp. 284-290, (2015).
25. Zhou, Z., Zhang, K., Zhou, J., Sun, G., and Wang, J. “Application of laser ultrasonic technique for non-contact detection of structural surface-breaking cracks”, Optics & Laser Technology, Vol. 73 , pp. 173-178, (2015).
26. Dai, Y., Xu, B. Q., Luo, Y., Li, H., and Xu, G. D., “Finite element modeling of interaction of laser-generated ultrasound with a suface-breaking notch in an elastic plate”, Optics & Laser Technology, Vol. 42, pp. 693-697, (2010).
27. Li, C., Li, S., Guan, G., Wei, C., Huang, Z., and Wang, R. K., “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms”, Optics & Laser Technology, Vol. 44, pp. 866-871, (2012).
28. Liu, P., Nazirah, A. W., and Sohn, H., “Numerical simulation of damage detection using laser-generated ultrasound”, Ultrasonics, Vol. 69, pp. 248-258, (2016).
29. Arias, I., and Achenbach, J. D., “A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique”, Wave Motion, Vol. 39, No. 1, pp. 61-75, (2004).
30. Wang, J., Shen, Z., Xu, B., Ni, X., Guan, J., and Lu, J., “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method”, Optics & Laser Technology, Vol. 39, pp. 806-813, (2007).       
31. Veres, I. A., Berer, T., and Burgholzer, P., “Numerical modeling of thermoelastic generation of ultrasound by laser irradiation in the coupled thermoelasticity”, Ultrasonics, Vol. 53, pp. 141-149, (2013).
32. Every, A. G., Utegulov, Z. N., and Veres, I. A., “Pulsed laser generation of ultrasound in a metal plate between the melting and ablation thresholds”, AIP Conference Proceedings, Vol. 1650, pp. 1350-1359, Boise, Idaho, USA, (2015).
33. Zhao, Y., Shen, Z., Lu, J., and Ni, X., “A finite element model for laser-induced leaky waves at fluid-solid interfaces”, Physical Letters A, Vol. 370, pp. 104-109, (2007).
34. Liu, W., Ma, J., Kong, F., Liu, S., and Kovacevic, R., “Numerical modeling and experimental verification of residual stress in autogenous laser welding of high-strength steel”, Lasers in Manufacturing and Materials Processing, Vol. 2, pp. 24-42, (2015).
35. Nezamdost, M. R., Esfahani, M. R. N., Hashemi, S. H., and Mirbozorgi, S. A., “Investigation of temperature and residual stresses field of submerged arc welding by finite element method and experiments”, International Journal of Advanced Manufacturing Technology, Vol. 67, pp. 615-624, (2016).
36. Huang, H., Wu, Y. Q., Wang, S. L., He, Y. H., Zou, J., Huang, B. Y., and Liu, C. T., “Mechanical properties of single crystal tungsten mirowhiskers characterized by nanoindentation”, Materials Science and Engineering A, Vol. 523, pp. 193-198, (2009).