انتقال گرمای نانوسیال در یک کانال دارای میدان مغناطیسی و مانع متخلخل با استفاده از مدل دارسی-برینکمن - فرچهیمر در روش شبکة بولتزمن

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مکانیک، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران.

چکیده

در مقاله حاضر، اختلاط در جریان‌ الکترواسموتیک در حضور یک میدان مغناطیسی با سه موقعیت مختلف مکانی به‌صورت عددی مطالعه و شبیه‌سازی شده است. هندسه جریان یک مجرای دوبعدی بین دو صفجه موازی است و جریان مورد نظر تراکم ناپذیر، دائم و آرام فرض شده است. معادلات حاکم بر مسأله، شامل معادلات اندازه حرکت اصلاح شده (ناویر-استوکس) برای میدان جریان سیال، معادلات میدان‌های پتانسیل الکتریکی خارجی و داخلی، معادلات توزیع غلظت یون‌های مثبت و منفی (ارنست-پلانک)، معادله میدان مغناطیسی و معادله‌ی غلظت گونه‌ها به روش عددی حجم محدود حل شده است.به منظور اعتبارسنجی برنامه عددی، یک جریان ایده‌آل الکترواسموتیک که در آن سراسر دیواره‌ها باردار می‌باشد، شبیه‌سازی گردیده است و نتایج آن با نتایج تحلیلی موجود مقایسه شده است.نتایج عددی نشان می‌دهد که در حضور یک میدان مغناطیسی برای جریان در یک ریزمجرا، راندمان اختلاط نسبت به حالت عدم حضور میدان مغناطیسی افزایش چشم‌گیری می‌یابد، به طوری که راندمان اختلاط نهایی حداکثر به 3/93 درصد می‌رسد. البته این در حالی است که میدان مغناطیسی قبل از لایه دوگانه الکتریکی اعمال شده باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Heat Transfer of Nanofluid in a Channel with Magnetic Field and Porous Obstacle using the Darcy-Brinkman-Forchheimer Model in the LBM Method

نویسندگان [English]

  • Saed Bazkhane
  • Iman Zahmatkesh
Department of Mechanical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
چکیده [English]

In this study, heat transfer of nanofluid in a channel with an externallyapplied magnetic field and a porous obstacle is simulated and discussed. To simulate the flow field inside the obstacle, the DarcyBrinkmanForchheimer model is implemented in the LBM method. Thereafter, effects of influencing parameters on the heat transfer rate are analyzed utilizing the experimental design method. The results show that the nanoparticles type has the greatest effect on the heat transfer with the contribution ratio of 62.79%. The second and the third parameters are the obstacle size and the Reynolds number, with the contribution ratios of 20.71% and 7.58%, respectively. The contribution ratios of the Hartmann number and the nanoparticles fraction are estimated about 3%. However, it is found that in this problem, the influences of the porosity, type, and the Darcy number of the obstacle on the mean Nusselt number are almost negligible.

کلیدواژه‌ها [English]

  • Nanofluid
  • Magnetic field
  • porous media
  • LBM method
  • Darcy-Brinkman-Forchheimer model
  • Taguchi method
1. Fakur, M., Vahabzadeh, A. and Ganji, D.D., “Study of heat transfer and flow of nanofluid in permeable channel in the presence of magnetic field”, Propulsion and Power Research, Vol. 4, pp. 50–62, (2017).
2. Izadi, M., Mohebbi, R., Delouei, A.A. and Sajjadi, H., “Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields”, International Journal of Mechanical Sciences, Vol. 151, pp. 154–169, (2019).
3. Bezaatpour, M. and Goharkhah, M., “Effect of magnetic field on the hydrodynamic and heat transfer of magnetite ferrofluid flow in a porous fin heat sink”, Journal of Magnetism and Magnetic Materials, Vol. 476, pp. 506–515, (2019).
4. Heidary, H., Hosseini, R., Pirmohammadi, M. and Kermani, M.J., “Numerical study of magnetic field effect on nanofluid forced convection in a channel”, Journal of Magnetism and Magnetic Materials, Vol. 374, pp. 11–17, (2015).
5. Zahmatkesh, I. and Shandiz, M.R.H., “Optimum constituents for MHD heat transfer of nanofluids within porous cavities”, Journal of Thermal Analysis and Calorimetry, Vol. 138, pp. 1669–1681, (2019).
6. Ramian, P., Rahni, M.T. and Adamian, A., “Computational simulation of effects of nano–fluidicity and flow boundaries on natural heat transfer in presence of magnetic field, using LBM”, Modares Mechanical Engineering, Vol. 15, pp. 167–178, (2015) (In Persian).
7. Aliu, O., Sakidin, H., Foroozesh, J. and Yahya, N., “Lattice Boltzmann application to nanofluids dynamics–A review”, Journal of Molecular Liquids, Vol. 300, p. 112284, (2020).
8. Uriel, F., Hasslacher, B. and Pomeau, Y., “Lattice–gas automata for the Navier–Stokes equation”, Physical Review Letters, Vol. 56, pp. 1505–1508, (1986).
9. McNamara, G.R. and Zanetti, G., “Use of the Boltzmann equation to simulate lattice–gas automata”, Physical Review Letters, Vol. 61, pp. 2332–2335, (1988).
10. Higuera, F.J. and Jiménez, J., “Boltzmann approach to lattice gas simulations”, EPL (Europhysics Letters), Vol. 9, p. 663, (1989).
11. Chen, H., Chen, S. and Matthaeus, W.H., “Recovery of Navier–Stokes equation using a lattice–gas Boltzmann equation method”, Physical Review A, Vol. 45, pp. 5339–5342, (1992).
12. Ashorynejad, H.R. and Zarghami, A., “Magnetohydrodynamics flow and heat transfer of Cu–water nanofluid through a partially porous wavy channel”, International Journal of Heat and Mass Transfer, Vol. 119, pp. 247–258, (2018).
13. Servati, A.A., Javaherdeh, K. and Ashorynejad, H.R., “Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using Lattice Boltzmann Method”, Advanced Powder Technology, Vol. 25, pp. 666–675, (2014).
14. Golneshan, A.A. and Lahonian, M., “Diffusion of magnetic nanoparticles in a multi–site injection process within a biological tissue during magnetic fluid hyperthermia using lattice Boltzmann method”, Mechanics Research Communications, Vol. 38, pp. 425–430, (2011).
15. Nazari, M., Kayhani, M.H. and Mohebbi, R., “Heat transfer enhancement in channel partially filled with porous block: Lattice Boltzmann method”, International Journal of Modern Physics C, Vol. 24, p. 1350060, (2013).
16. Rong, F., Shi, B. and Cui, X., “Lattice Boltzmann simulation of heat and fluid flow in 3D cylindrical heat exchanger with porous blocks”, Applied Mathematics and Computation, Vol. 276, pp. 367–378, (2016).
17. Abchouyeh, M.A., Fard, O.S., Mohebbi, R. and Sheremet, M.A., “Enhancement of heat transfer of nanofluids in the presence of sinusoidal side obstacles between two parallel plates through the lattice Boltzmann method”, International Journal of Mechanical Sciences, Vol. 156, pp. 159–169, (2019).
18. Feng, X.B., Liu, Q. and He, Y.L., “Numerical simulations of convection heat transfer in porous media using a cascaded lattice Boltzmann method”, International Journal of Heat and Mass Transfer, Vol. 151, p. 119410, (2020).
19. Mohebbi, R., Izadi, M., Delouei, A.A. and Sajjadi, H., “Effect of MWCNT–Fe3O4/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling”, Journal of Thermal Analysis and Calorimetry, Vol. 135, pp. 3029–3042, (2019).
20. Sajjadi, H., Delouei, A.A., Izadi, M. and Mohebbi, R., “Investigation of MHD natural convection in a porous media by double MRT lattice Boltzmann method utilizing MWCNT–Fe3O4/water hybrid nanofluid,” International Journal of Heat and Mass Transfer, Vol. 132, pp. 1087–1104, (2019).
21. Kuznetsov, A.V., “Analytical study of fluid flow and heat transfer during forced convection in acomposite channel partly filled with a Brinkman–Forchheimer porous medium”, Flow, Turbulence and Combustion, Vol. 60, pp. 173–192, (1998).
22. Goli, A. and Zahmatkesh, I., “Slip flow in porous micro–tubes under local thermal non–equilibrium conditions”, Transport Phenomena in Nano and Micro Scales, Vol. 6, pp. 79–87, (2018).
23. Rashidi, S., Dehghan, M., Ellahi, R., Riaz, M. and Jamal–Abad, M.T., “Study of wise transverse magnetic fluid flow with heat transfer around an obstacle embedded in porous media”, Journal of Magnetism and Magnetic Materials, Vol. 378, pp. 128–137, (2015).
24. Namadchain, H., Zahmatkesh, I. and Alavi, S.M.A., “Numerical simulation of nanofluid flow in an annulus with porous baffles based on the combination of the Darcy–Brinkman–Forchheimer model and the two–phase mixture model”, Amirkabir Journal of Mechanical Engineering, Vol. 53 (2021) (In Persian).
25. Esmaeili, M., Karami, M. and Delfani, S., “Performance enhancement of a direct absorption solar collector using copper oxide porous foam and nanofluid”, International Journal of Energy Research, Vol. 44, pp. 5527–5544, (2020).
26. Shirvan, K.M. and Mamourian, M., “Numerical investigation and optimization of mixed convection and entropy generation in square cavity with lid–driven”, Modares Mechanical Engineering, Vol. 15, pp. 164–174, (2015) (In Persian).
27. Jamei, M.K. and Abbasi, M.,“Numerical investigation of nano–fluid flow on micro channel heat sink efficiency using the Taguchi method”, Journal of Solid and Fluid Mechanics, Vol. 7, pp. 287–275, (2017) (In Persian).
28. Alinezhad, J. and Esfahani, J.A., “Lattice Boltzmann simulation and Taguchi optimization of magnetic field effects on nanofluid natural convection in a semicircular enclosure”, Fluid Mechanics and Aerodynamics Journal, Vol. 6, pp. 45–59, (2017) (In Persian).
29. Sharifi, A.H., Zahmatkesh, I., Mozhdehi, A.M., Morsali, A. and Bamoharram, F.F., “Stability appraisement of the alumina–brine nanofluid in the presence of ionic and non–ionic disparents on the alumina nanoparticles surface as heat transfer fluids: Quantum mechanical study and Taguchi-optimized experimental analysis”, Journal of Molecular Liquids, Vol. 319, p. 113898, (2020).
30. Bazkhane, S. and Zahmatkesh. I., “Taguchi–based sensitivity analysis of hydrodynamics and heat transfer of nanofluids in a microchannel heat sink (MCHS) having porous substrates”, International Communications in Heat and Mass Transfer,Vol. 118, p. 104885, (2020).
31. Sukop, M.C. and Thorne, D.T.J., “Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers”, Springer–Verlag, Berlin, Heidelberg, (2006).
32. Guo, Z. and Zhao, T.S., “Lattice Boltzmann model for incompressible flows through porous media”, Physical Review E, Vol. 66, p. 036304, (2002).
33. Zarghami, A., Biscarini, C., Succi, S. and Ubertini, S., “Hydrodynamics in porous media: a finite volume lattice Boltzmann study”, Journal of Scientific Computing, Vol. 59, pp. 80–103, (2014).
34. Ergun, S., “Fluid flow through packed columns”, Chemical Engineering Progress, Vol. 48, pp. 89–94, (1952).
35. Guo, Z., Zheng, C., Shi, B. and Zhao, T.S., “Thermal lattice Boltzmann equation for low Mach number flows: Decoupling model”, Physical Review E, Vol. 75, p. 036704, (2007).
36. Jin, L., Zhang, X. and Niu, X., “Lattice Boltzmann simulation for temperature–sensitive magnetic fluids in a porous square cavity”, Journal of Magnetism and Magnetic Materials, Vol. 324, pp. 44–51, (2012).
37. Torshizi, E. and Zahmatkesh, I., “Comparison between single–phase, two–phase mixture and Eulerian–Eulerian models for the simulation of jet impingement of nanofluids”, Journal of Applied and Computational Sciences in Mechanics, Vol. 27, pp. 55–70, (2016) (In Presian).
38. Zou, Q. and He, X., “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model”, Physics of Fluids, Vol. 9, pp. 1591–1598, (1997).
39. Mohamad, A.A., “Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer”, Sure Printing, Calgary, Canada, (2007).
40. Orlanski, I., “A simple boundary condition for unbounded hyperbolic flows”, Journal of Computational Physics, Vol. 21, pp. 251–269, (1976).
41. Zarghami A. and Padding J.T., “Drag, lift and torque acting on a two–dimensional non–spherical particle near a wall”, Advanced Powder Technology, Vol. 29, pp. 1507–1517, (2018).