ارائه رابطه‌ای جهت به‌دست آوردن میزان نشت گاز طبیعی از یک خط لوله مدفون فشار بالا در یک محیط متخلل

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.

چکیده

 نشت گاز از خطوط لوله انتقال علاوه بر هدر رفت حجم زیادی از گاز و گاهاً قطع جریان گاز می‌تواند خسارت‌های جانی و محیط‌زیستی قابل توجه‌ای را به همراه داشته باشد. از این‌رو مهار نکردن نشتی، باعث ضررهای هنگفت سالیانه به شرکت ملی گاز خواهد شد. موضوع این پژوهش، شبیه‌سازی عددی نشت گاز از خطوط لوله فشار بالا (تا psi1050 یا kPa 7240) مدفون در خاک و ارائه رابطه‌ای جهت محاسبه میزان نشت گاز از این خطوط لوله می‌باشد. نشتی از یک سوراخ در قسمت فوقانی سطح جانبی لوله در نظر گرفته شده است. سیال کاری تراکم‌پذیر و جریان به‌صورت آشفته و پایا می‌باشد. همچنین خاک اطراف لوله به‌صورت یک ناحیه متخلخل همگن مدل‌سازی شده است. اطلاعات مورد نیاز برای شبیه‌سازی مسئله به کمک مشاور صنعتی تهیه شده است. در این مطالعه پارامترهای تاثیر گذار بر مقدار دبی حجمی گاز نشت شده مورد بررسی قرار گرفته است. نتایج حاضر نشان می‌دهد که بر خلاف خطوط روزمینی، نشتی از مقطع آسیب دیده در خطوط مدفون، حتی در فشارهای بالا، در سرعت‌های پائین رخ داده و خفگی دینامیک گازی جریان مشاهده نمی‌شود. در نهایت روابط همبسته‌ی بسیار دقیقی برای تخمین میزان نشتی از خطوط تغذیه و انتقال ارائه شده است که کمینه ضریب همبستگی آن 9960/0 می باشد.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Presenting a Correlation to Obtain Natural Gas Leakage Rate from a Buried High-Pressure Pipeline in a Porous Media

نویسندگان [English]

  • Reza Sabzian
  • Ali Abdollahi
  • sobhan ٍEmami Kopaei
Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
چکیده [English]

Gas leakage from transmission pipelines waste a large amount of gas and interrupt the gas flow. In addition, it could cause significant loss of life and environmental damage. If the leaks in the pipelines are not restrained, in this way the National Gas Company will pay huge economics losses annually. The subject of this study is numerical simulation of gas leakage from high pressure buried pipelines (up to 1050 psi or 7240 kPa) in the soil and develops correlations for estimating gas leakage from these pipelines. Leakage hole was considered on the upper side of the pipe surface. The working fluid is compressible and the flow are turbulent and steady. Also the soil surrounding the tube was modeled as a homogeneous porous zone. The information required to simulate this problem was provided with the help of the industrial consultant. In this study, parameters affecting on the volume of gas leakage were investigated. The results show that the leakages from damaged cross-sections on high pressure buried pipelines, unlike unburied pipes, happen at low velocities and there is no evidence of choked flow. Finally, the accurate correlations were provided to estimate the leakage from the feed and transmission pipelines that minimum R equal 0.9981.

کلیدواژه‌ها [English]

  • Pipeline
  • Transmission and Supply pipelines
  • Natural gas leakage
  • porous media
  • Correlation
1. حاج سقطی، اصغر، "اصول و کاربرد انرژی خورشیدی"، چاپ دوم، تهران: مرکز انتشارات دانشگاه علم و صنعت ایران، (1380).
2. Ali, I., Saleh, M., et al. "An optical analysis of a static 3-D solar concntrator", Solar Energy, Vol. 88, pp. 57-70, (2013).
3.  Kaushika, N. D., and Reddy, K. S., "Performance of a low cost solar paraboloidal dish steam generating system", Energy Conversion and Management, Vol. 41.7, pp. 713-726, (2000).
4.  El Ouederni, A. R., et al. "Experimental study of a parabolic solar concentrator", Revue des Energies Renouvelables, Vol. 12.3, pp. 395-404, (2009).
5.  Rafeeu, Y., and Ab Kadir, M. Z. A., "Thermal performance of parabolic concentrators under Malaysian environment: A case study", Renewable and Sustainable Energy Reviews, Vol. 16.6, pp. 3826-3835, (2012).
6.    Liu, Z., Justin, L., and Wojciech, L., "Optical design of a flat-facet solar concentrator", Solar Energy Vol. 86.6, pp. 1962-1966, (2012).
7.    Qianjun, M., et al. "Study on solar photo‐thermal conversion efficiency of a solar parabolic dish system", Environmental progress & Sustainable energy, Vol. 33.4, pp. 1438-1444, (2014).
8.    Eswaramoorthy, M., and Shanmugam, S., "The thermal performance of a low cost solar parabolic dish collector for process heat", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects Vol. 34.18, pp. 1731-1736, (2012).
9.    Reddy, K. S., Sendhil, K. Natarajan., and Veershetty, G., "Experimental performance investigation of modified cavity receiver with fuzzy focal solar dish concentrator", Renewable Energy, Vol. 74, pp. 148-157, (2015).
10.  Jones, Peter D., and Wang, L., "Concentration distributions in cylindrical receiver/paraboloidal dish concentrator systems", Solar Energy, Vol. 54.2, pp. 115-123, (1995).
11.  Thakkar, Vanita, Ankush Doshi, and Akshaykumar Rana, "Performance analysis methodology for parabolic dish solar concentrators for process heating using thermic fluid", IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), Vol. 12.1, pp. 101-114, (2015).
12.  Blázquez, R., et al. "Optical test of the DS1 prototype concentrating surface", Energy Procedia, Vol. 69, pp. 41-49, (2015).
13.  Li, Zhigang, et al. "Study on the radiation flux and temperature distributions of the concentrator–receiver system in a solar dish/Stirling power facility", Applied Thermal Engineering, Vol. 31.10, pp. 1780-1789, (2011).
14.  Shuai, Yong, Xin-Lin Xia, and He-Ping Tan, "Radiation performance of dish solar concentrator/cavity receiver systems", Solar Energy, Vol. 82.1, pp. 13-21, (2008).
15.  Pavlovic, S., et al. "Design and Simulation of a Solar Dish Concentrator with Spiral-Coil Smooth Thermal Absorber", International Review of Applied Sciences and Engineering, Vol. 8.1, pp. 45-50, (2017).
16.  Jeter, S. M., "The distribution of concentrated solar radiation in paraboloidal collectors", Journal of Solar Energy Engineering, Vol. 108.3, pp. 219-225, (1986).
17.  Schubnell, M., "Sunshape and its influence on the flux distribution in imaging solar concentrators", Journal of solar energy engineering, Vol. 114.4, pp. 260-266, (1992).
18.  Affandi, Rosnani, et al. "The impact of the solar irradiation, collector and the receiver to the receiver losses in parabolic dish system", Procedia-Social and Behavioral Sciences, Vol. 195, pp. 2382-2390, (2015).
19.  Sakhare, Vinayak, and Kapatkar, V. N., "Experimental analysis of parabolic solar dish with copper helical coil receiver", Int J Innov Res Adv Eng (IJIRAE), Vol. 1.8, pp. 199-204, (2014).
20.  Li, L., and Steven, D., " A New Design Approach for Solar Concentrating Parabolic Dish Based on Optimized Flexible Petals", Journal Mechanism and Machine Theory, Vol. 46.10, pp. 1536-1548, (2011).
21.  Mon, Mya Mya, Myat Myat Soe, and Maw Maw Htay. "3D Modeling of Temperature Distribution for Absorber Tube of Parabolic Trough Collector", International Journal of Engineering and Applied Sciences, Vol. 2.6, pp. 99-103, (2015).
22.  Hafez, A. Z., et al., "Solar parabolic dish Stirling engine system design, simulation, and thermal analysis." Energy Conversion and Management, Vol. 126, pp. 60-75, (2016).
23.  Reddy, K. S., and N. Sendhil Kumar. "Combined laminar natural convection and surface radiation heat transfer in a modified cavity receiver of solar parabolic dish", International Journal of Thermal Sciences, Vol. 47.12, pp. 1647-1657, (2008).
24.  Rojas-Morín, A., Flores-Salgado, Y., Barba-Pingarrón, A., Valdez-Navarro, R., Méndez, F., Alvarez, O., and Salgado-Baltazar, M., "Thermal analysis for the solar concentrating energy and induction heating for metals", in: Proceedings of the 2013 COMSOL Conference, Rotterdam, Holland, Vol. 1, pp. 1-16, (2013).
25.  Thirunavukkarasu, V., and Cheralathan, M., "An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator", Energy, Vol. 192, pp. 116635, (2020).‏
26.  Venkatachalam, T., and Cheralathan, M., "Effect of aspect ratio on thermal performance of cavity receiver for solar parabolic dish concentrator: An experimental study", Renewable energy, Vol. 139, pp. 573-581, (2019).‏
27.  Avargani, V. M., Karimi, R., and Gheinani, T. T., "Mathematical modeling of an integrated system for regeneration of solid desiccants using a solar parabolic dish concentrator", International Journal of Heat and Mass Transfer, Vol. 142, pp. 118479, (2019).‏
28.  Cherif, H., Ghomrassi, A., Sghaier, J., Mhiri, H., & Bournot, P., "A receiver geometrical details effect on a solar parabolic dish collector performance", Energy Reports, Vol. 5, pp. 882-897, (2019).‏
29.  Wang, L., Yuan, Z., Zhao, Y., & Guo, Z., "Review on development of small point-focusing solar concentrators", Journal of Thermal Science, Vol. 28(5), pp. 929-947, (2019).‏
30.  Baydyk, T., Kussul, E., and Wunsch II, D. C., "Solar Concentrators with Flat Mirrors", In Intelligent Automation in Renewable Energy, part of Computational Intelligence Methods and Applications book series, Springer, Cham, pp. 23-43, (2019).
31.  Pavlović, S. R., Bellos, E. A., Stefanović, V. P., Tzivanidis, C., and Stamenković, Z. M., "Design, simulation and optimization of a solar dish collector with spiral-coil thermal absorber", Thermal science, Vol. 20(4), pp. 387-1397, (2016).‏
32.  Pavlović, S. R., Bellos, E. A., Stefanović, V. P., Tzivanidis, C., and Stamenković, Z. M., "Design, simulation and optimization of a solar dish collector with spiral-coil thermal absorber", Thermal science, Vol. 20(4), pp. 1387-1397, (2016).‏
33.  Álvarez-Brito and Salgado-Baltazar, M., "Thermal Analysis for the Solar Concentrating Energy and Induction Heating for Metals", In: Proceedings of the 2013 COMSOL Conference, Rotterdam, Holland, Vol. 1, pp. 1-16, (2013).
34.  Comsol, A. B. Heat Transfer Module, User´s Guide, COMSOL. COMSOL Multiphysics R, Stockholm, Sweden, Version 5, (2018).
35.  Dehaj, M. S., and Mohiabadi, M. Z., "Experimental investigation of heat pipe solar collector using MgO nanofluids", Solar Energy Materials and Solar Cells, Vol. 191, pp. 91-99, (2019).‏