تأثیر افزودن نانوذرات آلومین بر فرآیند احتراق با کمک شاخص همگنی در یک موتور اشتعال تراکمی

نوع مقاله : مقاله کوتاه

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی

2 دانشکده مهندسی مکانیک دانشگاه تربیت دبیر شهید رجایی

چکیده

تحقیقات گذشته نشان داده که بکارگیری نانو ذره در احتراق باعث کاهش آلاینده های حاصل از احتراق می شود. در مطالعه حاضر بررسی عددی افزودن نانو ذرات اکسید آلومینیوم به سوخت دیزل، بر عملکرد و میزان آلاینده­های تولیدی یک موتور اشتعال تراکمی پاشش مستقیم، انجام شده است. شبیه سازی فرآیند های پاشش، تشکیل مخلوط و احتراق موتور توسط نرم افزار AVL_Fire انجام شده است. در این مطالعه، به منظور محاسبه عددی میزان کیفیت اختلاط سوخت و هوا از یک پارامتر اصلاح شده با نام شاخص همگنی استفاده شده است. به این ترتیب علاوه بر بررسی کیفیت اختلاط سوخت و هوا، روند فرآیند احتراق تراکمی نیز مورد مطالعه و بررسی قرار گیرد. طبق نتایج بدست آمده در این پژوهش، با افزودن نانو ذرات آلومینا به سوخت، میزان مصرف سوخت ویژه کاهش می­یابد و همچنین میانگین آلاینده­های خروجی موتور از جمله آلاینده اکسیدهای نیتروژن و دوده کاهش می­یابد. این نتایج نشان می­دهد که افزودن نانوذرات آلومینا به سوخت، باعث افزایش شاخص همگنی ترکیب سوخت و هوا درون محفظه احتراق می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of Alumina Nanoparticles on the Combustion Process with the Help of Homogeneity Factor in a Compression Ignition Engine

نویسندگان [English]

  • Arash Mohammadi 1
  • Mostafa Varmazyar 2
  • Mohsen Soleimani 2
1 Mechanical Engineering Department, Shahid Rajaee Teacher Training University.
2 Mechanical Engineering Department, Shahid Rajaee Teacher Training University.
چکیده [English]

of combustion .In this research was conducted to study the addition of aluminum oxide nanoparticles to fuel on performance and emissions of a CI engine done. Simulation of engine combustion carried out by AVL-Fire.  In this study, in order to calculate the quantity of quality the mixing of fuel and air a modified parameter called the homogeneity factor, was used. Thus, in addition to check the quality of fuel and air mixing, the compression ignition process is also studied. According to the results obtained in this study, by adding Nano-particles of alumina to fuel, specific fuel consumption reduces. Also, the average engine exhaust emissions such as NOx and soot are reduced. These results indicate that the addition of alumina nanoparticles to fuel causes increasing the homogeneity factor of mixing of fuel and air inside the combustion chamber.

References:
1. Heywood, J., “Internal combustion engine fundamentals.” McGraw-Hill, 1988.
2. Wang, H., Youngchul, R., Reitz, R. D., “Development of a reduced n-dodecane-PAH mechanism and its application for n-dodecane soot predictions”, J. Fuel, Vol. 136, pp. 25-36, (2014).
3. Pulkrabek, W. W., “Engineering fundamentals of the internal combustion engine”. Second edition, Prentice-Hall, (1997).
4. Ballester, M. J., Norberto F., and Dopazo, C. "Combustion characteristics of heavy oil-water emulsions." J. Fuel, Vol. 75, Issu. 6, pp. 695-705, (1996).
5. Gunnerman, R. W., and Russell. R. L., “Emission and efficiency benefits of emulsified fuels to internal combustion engines”. SAE technical paper, No. 978474, (1997).
6. Walavalkar, A. Y. "Combustion of water-in-oil emulsions of diesel and fresh and weathered crude oils floating on water." PhD thesis in mechanical engineering, PennState University, (2001).
7. Mimani, T., and K. C. Patil. "Solution combustion synthesis of nanoscale oxides and their composites.", J. Materials Physics and Mechanics (Russia) Vol. 4, pp. 134-137, (2001).
8. Kuo, K., Risha, G. A., Evans, B. J., Boyer, E., "Potential usage of energetic Nano-sized powders for combustion and rocket propulsion." Material Research Sociaty Symposium, Published online by Cambridge University Press, (2003).
9. Ravi, P., Prajesh, B., and Phelan, P. E., "Thermal conductivity of nanoscale colloidal solutions" J. Physical review letters Vol.9, Issue 2, (2005).
10. Prasher, R., Bhattacharya, P., and Phelan, P., "Brownian-motion-based convective-conductive model for the effective thermal conductivity of Nano fluids." Journal of heat transfer Vol. 128, pp. 588-595, (2006).
11. Prasher, R., Bhattacharya, P., and Phelan, P., "Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions." J.Nano letters Vol. 6, pp. 1529-1534, (2006).
12. Jung, H., David, B. K, and Michael R. Z., "The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation." J. Combustion and Flame, Vol. 142, pp. 276-288, (2005).
13. Krishnamurthy, S., Bhattacharya, P., Phelan, R. S., Prasher, R. S., "Enhanced mass transport in Nano fluids." Nano letters pp. 419-423, (2006).
14. Prasher, R. S., and Phelan, P. E., "Modeling of radiative and optical behavior of Nano fluids based on multiple and dependent scattering theories." Paper. IMECE2005-, Orlando, (2005).
15. Tyagi, H., Phelan. P., and Prasher, R., "Predicted efficiency of a Nano fluid-based direct absorption solar receiver." ASME Energy Sustainability Conference, Paper No. ES2007-36139. (2007).
16. Kao, M., Ting, C., Lin, B., Tsung, T., "Aqueous aluminum Nano fluid combustion in diesel fuel." Journal of testing and evaluation Vol. 36, No. 2, pp. 186-190, (2008).
17. Tyagi, H., "Increased hot-plate ignition probability for nanoparticle-laden diesel fuel" J. Nano letters, pp. 1410-1416, (2008).
18. Mench, M. M., Yeh, C. L. and Kuo, K. K.,. "Propellant burning rate enhancement and thermal behavior of ultra-fine aluminum powders (Alex)." Energetic materials- Production, processing and characterization, pp. 1-30, (1998).
19. Saeter, T. O., Hydrogen Power: Theoretical and Engineering Solutions: Kluwer Academic Publishers. pp. 396-364, 1998.
20. Arul, V., Selvan, V., M, Anand, R., and M. Udayakumar. "Effects of cerium oxide nanoparticle addition in diesel and diesel–biodiesel–ethanol blends on the performance and emission characteristics of a CI engine." J Engineering and Applied Science, Vol. 4, No. 7. pp. 1-6, (2009).
21. Sajith, V., Sobhan, C. B., and Peterson, G. P., "Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel." J. Advances in Mechanical Engineering, Vol. 47, pp. 581-407, 2 (2010).
22. Mehregan, M., and Moghiman, M. , "Effect of aluminum nanoparticles on combustion characteristics and pollutants emission of liquid fuels–A numerical study" J. Fuel Vol. 119 pp. 57-61, (2014).
23. Zha, M. "Effect of particle size on reactivity and combustion characteristics of aluminum nanoparticles." J. Combustion Science and Technology, Vol. 187, pp. 1036-1043, (2015).
24. AVLFire Users Guide-ICE Physics & Chemistry, 2014.
25. Colin, O. and Benkenida, A., “The 3-zones extended coherent flame model for computing premixed/diffusion combustion.” Oil & Gas Science and Technology, Vol. 59, No. 6, pp. 593-609, (2004).
26. Helie, J. and Trouve , A., “A modified coherent flame model to describe turbulent flame propagation in mixtures with variable composition.”, Proceedings of the Combustion Institute, Vol. 28, Issue. 1, pp. 193-201, (2000).
27. Hanjalić, K., Popovac, M., and Hadžiabdić, M., “A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD.”, International Journal of Heat and Fluid Flow, Vol. 25, pp. 1047-1051, (2004).
28. Arcoumanis, C., Gavaises, M., and French, B., “Effect of fuel injection processes on the structure of diesel sprays”, SAE Technical Paper 1997-02-24, (1997).
29. Omidvarborna, H., Kumar, A., and Kim, D. S., “NOx emissions from low-temperature combustion of biodiesel made of various feeds tocks and blends”. Fuel Processing Technology, Vol. 140, pp. 113-118, (2015).
30. Omidvarborna, H., Kumar, A., and Kim, D.-S., “Recent studies on soot modeling for diesel combustion. Renewable and Sustainable Energy Reviews”, Vol. 48, pp. 635-647, (2015).
31. Baumgarten, C., “Mixture formation in internal combustion engines”. Springer, (2006).
32. O’Rourke, P. and Bracco, F., “ Modeling of drop interactions in thick sprays and a comparison with experiments”, Proceedings of the Institution of Mechanical Engineers, Vol. 9, pp. 101-106, (1980).
33. Nordin, P., “Complex chemistry modeling of diesel spray combustion”. Chalmers University of Technology, (2001).
34. Dukowicz, J. K., “Quasi-steady droplet phase change in the presence of convection”, Los Alamos Scientific Lab, (1979).
35. Nandha, K. and Abraham, J., Dependence of fuel-air mixing characteristics on injection timing in an early-injection diesel engine, SAE Technical Paper 2002-01-0944, (2002).
36. Peng, Z., Lian Tian, B., Lu, L., “Analysis of homogeneity factor for diesel PCCI combustion control”, SAE Technical Paper 2011-01-1832, (2011).
37. Mobasheri, R. and Peng, Z., “CFD investigation into diesel fuel injection schemes with aid of Homogeneity Factor”. J. Computers & Fluids, Vol. 77, pp. 12-23, (2013).
38. Mobasheri, R. and Peng, Z., “The development and application of homogeneity factor on DI diesel engine combustion and emissions”, SAE Technical Paper 2013-01-0880, (2013).
39. Suresh, S., “Synthesis of Al 2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties Colloids and Surfaces”, J. Physicochemical and Engineering Aspects, Vol. 38, pp. 41-48, (2011).
40. Ghadimi, A., R. Saidur, and H. S. C. Metselaar. "A review of nanofluid stability properties and characterization in stationary conditions.", International Journal of Heat and Mass Transfer, Vol. 54, pp. 4051-4068, (2011).
41. حسینی، سید شرف الدین؛ نانوسیال و مهندسی انتقال گرما؛ انتشارات یزدا، 13