طراحی و بررسی عددی جریان‌سنج جرمی حرارتی لوله‬مویین به‌عنوان کنتور گاز خانگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 صنعتی شاهرود

2 گرگان

چکیده

اندازه گیری دقیق گاز طبیعی همواره مساله مهمی به ویژه در سطح مصارف خانگی بوده است. یکی از انواع جریانسنجهای جرمی، جریانسنج جرمی حرارتی لوله مویین میباشد که برای اندازهگیری جریانهای با دبی پایین استفاده میشود. در این مطالعه شناخت پارامترهای مهم و تاثیر هر یک از این پارامترها در طراحی جریانسنج حرارتی لوله مویین بررسی شده است. برای این کار مدل سه بعدی یک جریانسنج جرمی حرارتی لوله مویین شبیه سازی و انتقال حرارت در لوله حسگر آن به صورت عددی برای گاز متان به عنوان گاز طبیعی تحلیل شده است. با در نظر گرفتن پارامترهای تاثیرگذار عدم قطعیت جریانسنج محاسبه شده است. برای اعتبارسنجی روش حل عددی، به دلیل عدم وجود دادههای آزمایشگاهی برای متان، از نیتروژن برای اعتبارسنجی استفاده شده که تطابق قابل قبولی نشان میدهد. نتایج عددی نشان میدهد که عدم قطعیت این جریانسنجها حداکثر 24/1 درصد بوده که برای کنتورهای خانگی قابل قبول میباشد.

کلیدواژه‌ها


عنوان مقاله [English]

Designing and Numerical Analysis of Capillary Tube Thermal Mass Flowmeter as a Residential Natural Gas Meter

نویسندگان [English]

  • saman parvizi 1
  • mahmood farzaneh gord 1
  • ali jabari moghadam 1
  • majid hashemian 1
  • mehrab aghili bahrami 2
1 shahrood university of technology
2 gorgan
چکیده [English]

Accurate natural gas measurement is an important issue especially in domestic usage levelCapillary tube thermal mass flow meter is one of the most common types of mass flow meters which are mostly used for low mass flow rates. In this work, a capillary tube flow meter was simulated numerically. A three-dimensional steady state heat transfer in its sensor tube was numerically analyzed and the sensitivity of this type of flow meter was investigated. In order to validate the simulation approach and conditions taken in this study, the simulation was also accomplished for Nitrogen, for which experimental data was available in the literature, leading to satisfactory results. Considering all the possible effective parameters, the uncertainty of the flow meter was also calculated. Numerical results show that the maximum amount of uncertainty in measurement for this type of flow meter is less than 1.24% that is acceptable for residential customers.

کلیدواژه‌ها [English]

  • Flow metering
  • Thermal massflowmeter
  • Three-Dimensional heat transfer
  • Capillary tube mass flow meter
  • Residential Natural Gas Meter
1. Hiismaeki, P., "Method and device for monitoring of a gas flow, in particular of a natural-gas flow", 08-Jul-1993, Internatinal Patent NumberWO1993013414.
2. Ficco, G., "Metrological performance of diaphragm gas meters in distribution networks", Flow Meas. Instrum., Vol. 37, pp. 65–72, (2014).
3. Chapman, N.R. and Etheridge, D.W., "A step change in domestic metering technology from leather diaphragms to ultrasonics", Flow Meas. Instrum., Vol. 5, No. 2, pp. 141–142, (1994).
4. Vasconcelos, C.D., Lourenço, S.R., Gracias, A.C. and Cassiano, D.A., "Network flows modeling applied to the natural gas pipeline in Brazil", J. Nat. Gas Sci. Eng., Vol. 14, pp. 211–224, (2013).
5. "http://www.irna.ir/fa/News/81845037", acessed 18/4/2017
6. Cubukcu, A.S., Romero, D.F.R. and Urban, G.A., "A dynamic thermal flow sensor for simultaneous measurement of thermal conductivity and flow velocity of gases", Sensors Actuators A Phys., Vol. 208, pp. 73–87, (2014).
7. McMahon, M., "Thermal Core Technology White Paper Series A Tale of Two Thermals : Capillary & Immersible Introduction", webpage, https://www.coursehero.com/file/27763356/A-Tale-of-Two-Thermalsdoc/ acessed 21/1/2017.
8. Komiya, K. Higuchi, F. and Ohtani, K., "Characteristics of a thermal gas flowmeter", Rev. Sci. Instrum., Vol. 59, No. 3, pp. 477-479, (1988).
9. Hinkle, L.D., "Toward understanding the fundamental mechanisms and properties of the thermal mass flow controller", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 9, 2043 (1991); https://doi.org/10.1116/1.577452
10. Kim, S.J. and Jang, S.P., "Experimental and numerical analysis of heat transfer phenomena in a sensor tube of a mass flow controller", Vol. 44, pp. 1711–1724, (2001).
11. Han, I.Y. Kim, D.-K. and Kim, S.J., "Study on the transient characteristics of the sensor tube of a thermal mass flow meter", Int. J. Heat Mass Transf., Vol. 48, No. 13, pp. 2583–2592, (2005).
12. Kim, D.-K. Han, I.Y. and Kim, S.J., "Study on the steady-state characteristics of the sensor tube of a thermal mass flow meter", Int. J. Heat Mass Transf., Vol. 50, No. 5–6, pp. 1206–1211, (2007).
13. Kim, T.H., Kim, D.-K. and Kim, S.J., "Study of the sensitivity of a thermal flow sensor", Int. J. Heat Mass Transf., Vol. 52, No. 7–8, pp. 2140–2144, (2009).
14. Viswanathan, M., Rajesh, R. and Kandaswamy, A., "Design and development of thermal mass flowmeters for high pressure applications", Flow Meas. Instrum., Vol. 13, No. 3, pp. 95–102, (2002).
15. Sazhin, O., "Novel mass air flow meter for automobile industry based on thermal flow microsensor. I. Analytical model and microsensor", Flow Meas. Instrum., Vol. 30, pp. 60–65, (2013).
16. Sazhin, O., "Novel mass air flow meter for automobile industry based on thermal flow microsensor. II. Flow meter, test procedures and results", Flow Meas. Instrum., Vol. 35, pp. 48–54, (2014).
17. Baker, R.C. and Gimson, C., "The effects of manufacturing methods on the precision of insertion and in-line thermal mass flowmeters", Flow Meas. Instrum., Vol. 12, No. 2, pp. 113–121, (2001).
18. Bartos, F.J., "Tame flow disturbances with the thermal massflow meter", Control Eng. Int., pp.
54–55, September (1995).
19. Viswanath, R.P., Viswanathan, B. and Sastri, M.V.C., "Kinetics of reduction of Fe2O3 to Fe3O4 by the constant temperature differential thermal analysis method", Thermochim. Acta, Vol. 16, No. 2, pp. 240–244, (1976).
20. Cappa, P. Del Prete, Z. and Marinozzi, F. "Experimental analysis of a new strain-gage signal conditioner based on a constant-current method", Sensors Actuators A Phys., Vol. 55, No. 2–3, pp. 173–178, (1996).
21. Graebel, W., Advanced Fluid Mechanics, 1st edition |ISSN 978-0-12-370885-4 | Academic Press, (2007).
22. Olin, J.G., "Capillary Tube Thermal Mass Flow Meters & Controllers, A User ’ s Guide", (2013).
23. Beronich, E.L., Abdi, M.A. and Hawboldt, K.A., "Prediction of natural gas behaviour in loading and unloading operations of marine CNG transportation systems", J. Nat. Gas Sci. Eng., Vol. 1, No. 1–2, pp. 31–38, (2009).
24. Kline, S.J. and McClintock, F.A., "Describing Uncertainties in Single-Sample Experiments", Mech. Eng., Vol. 75, pp. 3–8, (1953).
CAPTCHA Image