تحلیل عددی تأثیر تزریق سوخت بر بردار نیروی پیش‌ران موتور جت با نازل دارای دو گلوگاه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، پژوهشگاه هوافضا، تهران، ایران

2 دکتری هوافضا، دانشگاه صنعتی شریف، تهران، ایران

3 دانشگاه هوایی شهید ستاری، تهران، ایران

چکیده

یکی از مؤثرترین روش‌های تغییر بردار پیش‌رانش موتورهای جت، استفاده از نازل دارای دو گلوگاه و تزریق سوخت در گلوگاه بالادستی می­باشد. پژوهش حاضر به بررسی عملکرد یک سیستم کنترل بردار تراست با هندسۀ نازل دارای دو گلوگاه می‌پردازد. تأثیر تزریق جانبی سوخت بر پارامترهای عملکردی نازل شامل ضریب تخلیه، ضریب تراست، زاویۀ برداردهی، بازدهی برداردهی، نسبت تراست به دبی جرمی و درصد افت تراست مورد مطالعه قرار گرفته‌است. در این پژوهش تزریق هفت سوخت مختلف شامل متان، اتان، پروپان، اکتان، سوخت دیزل، کروسین و نفت‌گاز به‌صورت عددی مورد مطالعه قرار گرفته‌است. نتایج نشان می‌دهند که تزریق سوخت‌های سنگین‌تر موجب ایجاد ضریب تخلیۀ بالاتری می‌گردد؛ اما بیشترین زاویۀ برداردهی در جریان غیراحتراقی توسط سوخت دیزل و اکتان ایجاد می‌شود. به‌طور کلی می‌توان گفت که تزریق سوخت‌های سبک از نظر ضریب تراست، بازدهی برداردهی و نسبت تراست به دبی جرمی عملکرد بهتری دارند، ولی سوخت‌های سنگین از نظر ضریب تخلیه، زاویۀ برداردهی و درصد افت تراست بهتر می­باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Analysis of Fuel Injection Impacts on Thrust-Vectoring in a Dual Throat Nozzle

نویسندگان [English]

  • Mohammad Reza Salimi 1
  • Rasoul Askari 2
  • Majid Hasani 3
1 Assistant professor, Aerospace Research Institute, Tehran, Iran
2 PhD of Aerospace Engineering, Sharif University of Technology, Tehran, Iran
3 University of Shahid Satari, Tehran, Iran.
چکیده [English]

Today, the Dual-throat Nozzles are known as one of the most effective approaches for fluidic thrust vectoring. The present study investigates the performance of a dual throat fluidic thrust-vectoring nozzle. The impacts of fuel secondary injection on performance parameters including discharge coefficient, system thrust ratio, pitch thrust-vector angle, pitch thrust-vectoring efficiency, thrust-to-mass-flow ratio and thrust-loss percentage are presented. Injection of seven different fuels including methane, ethane, propane, octane, diesel fuel, kerosene and gasoil have been investigated. Both reacting and non-reaction conditions have been studied. The results show that heavier fuels provide higher discharge coefficients. On the other hand, light fuels have higher thrust ratios. In the non-reacting conditions, diesel fuel and octane have the largest thrust-vector angle,. In general, light fuels offer a better performance in terms of thrust ratio, thrust-vectoring efficiency and thrust-to-mass-flow ratio, whereas heavy fuels have a better performance in terms of discharge coefficient, thrust-vector angle and thrust-loss percentage.

کلیدواژه‌ها [English]

  • Thrust-vectoring
  • Dual throat nozzle
  • Discharge coefficient
  • Thrust-vector angle
  • Thrust-vectoring efficiency
  1. Flamm, J., Deere, K., Mason, M., Berrier, B. and Johnson, S., "Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application", In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, (2007).
  2. Waithe, K. and Deere, K., "An Experimental and Computational Investigation of Multiple Injection Ports in a Convergent-Divergent Nozzle for Fluidic Thrust Vectoring", In 21st AIAA applied aerodynamics conference, (2003).
  3. Wing, D.J., "Static Investigation of Two Fluidic Thrust-Vectoring Concepts on a Two-Dimensional Convergent-Divergent Nozzle", National Aeronautics and Space Administration, Langley Research Center, (1994).
  4. Wu, K., Kim, T.H. and Kim, H.D., "Theoretical and Numerical Analyses of Aerodynamic Characteristics on Shock Vector Control", J. Aerosp. Eng. Vol. 33, No. 5, p.04020050, (2020).
  5. Wu, K. and Dong Kim, H., "Numerical Study on the Shock Vector Control in a Rectangular Supersonic Nozzle", Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. Vol. 233, No. 13, pp. 1-23, (2019).
  6. Deng, R., Setoguchi, T. and Kim, H.D., "Large Eddy Simulation of Shock Vector Control Using Bypass Flow Passage", Int. J. Heat Fluid Flow. Vol. 62, P. 474481, (2016).
  7. Dores, D., Madruga Santos, M., Krothapalli, A., Lourenco, L., Collins, E., Alvi, F., Strykowski, P., "Characterization of a Counterflow Thrust Vectoring Scheme on a Gas Turbine Engine Exhaust Jet", In 3rd AIAA Flow Control Conference, (2006).
  8. Wu, K., Kim, T. and Kim, H., "Sensitivity Analysis of Counterflow Thrust Vector Control with a Three-Dimensional Rectangular Nozzle", J. Aerosp. Eng. Vol. 34, P.4020107, (2021).
  9. Wu, K., Jin, Y. and Kim, H.D., "Hysteretic Behaviors in Counter-Flow Thrust Vector Control", J. Aerosp. Eng. Vol. 32, P. 4019041 (2019).
  10. Wu, K., Kim, T.H., Kochupulickal, J.J. and Kim, H.D., "Assessment of the Counter-Flow Thrust Vector Control in a Three-Dimensional Rectangular Nozzle", J. Korean Soc. Propuls. Eng. Vol. 24, No.1, pp. 34-46, (2020).
  11. Deere, K., "Summary of Fluidic Thrust Vectoring Research at NASA Langley Research Center", In 21st AIAA applied aerodynamics conference, (2003).
  12. Yagle, P.J., Miller, D.N., Ginn, K.B. and Hamstra, J.W., "Demonstration of Fluidic Throat Skewing for Thrust Vectoring in Structurally Fixed Nozzles", In Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, (2000).
  13. Flamm, J., "Experimental Study of a Nozzle Using Fluidic Counterflow for Thrust Vectoring", In 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, (1998).
  14. Deere, K., Berrier, B., Flamm, J. and Johnson, S., "A Computational Study of a Dual Throat Fluidic Thrust Vectoring Nozzle Concept", In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, (2005).
  15. Flamm, J., Deere, K., Berrier, B., Johnson, S. and Mason, M., "Experimental Study of a Dual-Throat Fluidic Thrust-Vectoring Nozzle Concept", In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, (2005).
  16. Deere, K., Flamm, J., Berrier, B. and Johnson, S., "Computational Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for a Supersonic Aircraft Application", In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, (2007).
  17. Flamm, J., Deere, K., Mason, M., Berrier, B. and Johnson, S., "Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept", In 3rd AIAA flow control conference, (2006).
  18. Deere, K., Berrier, B., Flamm, J. and Johnson, S., "Computational Study of Fluidic Thrust Vectoring Using Separation Control in a Nozzle", In: 21st AIAA Applied Aerodynamics Conference, (2003).

.19 حامدی، ه.، جهرمی، م.، محمودی، م. و پیرکندی، ج.، «بررسی عددی تأثیر سطح مقطع تزریق جریان ثانویه بر میزان چرخش زاویۀ بردار نیرو در نازل‌‌‌ های دارای دو گلوگاه»، مهندسی مکانیک مدرس، سال پانزده، -125117، (1394).

  1. Wu, K.X., Kim, T.H. and Kim, H.D., "Numerical Study of Fluidic Thrust Vector Control Using Dual Throat Nozzle", J. Appl. Fluid Mech. Vol.14, No.1, p73-87, (2021).
  2. Gu, R. and Xu, J., "Effects of Cavity on the Performance of Dual Throat Nozzle During the Thrust-Vectoring Starting Transient Process", J. Eng. gas turbines power. Vol.136, P.14502, (2014).
  3. Gu, R. and Xu, J., "Dynamic Experimental Investigations of a Bypass Dual Throat Nozzle", J. Eng. Gas Turbines Power. Vol.137, No.8, (2015).
  4. Gu, R., Xu, J. and Guo, S., "Experimental and Numerical Investigations of a Bypass Dual Throat Nozzle", J. Eng. gas turbines power. Vol.136, No.8, (2014).
  5. Wang, Y., Xu, J., Huang, S., Jiang, J. and Pan, R., "Design and Preliminary Analysis of the Variable Axisymmetric Divergent Bypass Dual Throat Nozzle", J. Fluids Eng. Vol.142, No.6, (2020).
  6. Wang, Y.-S., Xu, J.-L., Huang, S., Lin, Y.-C. and Jiang, J.-J., "Experimental and Numerical Investigation of an Axisymmetric Divergent Dual Throat Nozzle", Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. Vol.234, No.3, pp.563-573, (2020).
  7. Hamedi-Estakhrsar, M.H. and Mahdavy-Moghaddam, H., "Experimental Evaluation and Numerical Simulation of Performance of the Bypass Dual Throat Nozzle", Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 0954410020959886, (2020).
  8. Hamedi-Estakhrsar, M.H., Ferlauto, M. and Mahdavy-Moghaddam, H., "Numerical Study of Secondary Mass Flow Modulation in a Bypass Dual-Throat Nozzle", Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. Vol.235, No.4, pp.488-500, (2021).
  9. Ferlauto, M. and Marsilio, R., "A Numerical Method for the Study of Fluidic Thrust-Vectoring", Adv. Aircr. Spacer. Sci. 3, No.4, P.367, (2016).
  10. Ferlauto, M. and Marsilio, R., "Numerical Investigation of the Dynamic Characteristics of a Dual-Throat-Nozzle for Fluidic Thrust-Vectoring", AIAA J., Vol.55, pp.86-98, (2017).
  11. Ferlauto, M. and Marsilio, R., "Open and Closed-Loop Responses of a Dual-Throat Nozzle During Fluidic Thrust Vectoring", In 52nd AIAA/SAE/ASEE Joint Propulsion Conference, (2016).
  12. Shin, C.S. and Kim, H.D., Setoguchi, T., Matsuo, S., "A Computational Study of Thrust Vectoring Control Using Dual Throat Nozzle", J. Therm. Sci. Vol.19, No.6, pp.486-490, (2010).
  13. Wang, Y., Xu, J. and Huang, S., "Study of Starting Problem of Axisymmetric Divergent Dual Throat Nozzle", J. Eng. Gas Turbines Power. Vol.139, No.6, (2017).
  14. Huang, S., Xu, J., Yu, K., Wang, Y. and Pan, R., "Design and Experimental Study of a Bypass Dual Throat Nozzle with the Ability of Short/Vertical Takeoff and Landing", Aerosp. Sci. Technol. 107301, (2021).
  15. Magnussen, B.F. and Hjertager, B.H., "On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion", In Symposium (international) on Combustion. Elsevier, (1977).
  16. Spalding, D.B. "Mixing and chemical reaction in steady confined turbulent flames", In: Symposium (International) on combustion. Elsevier (1971).
CAPTCHA Image