بهینه‌سازی ترمواکونومیکی چرخۀ کالینای مافوق گرم برای دماهای مختلف منابع زمین‌گرمایی در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فنی و مهندسی، دانشگاه حکیم سبزواری، سبزوار، ایران.

چکیده

منابع زمین‌گرمایی یکی از منابع حرارتی تجدیدپذیر هستند. در مطالعة حاضر، ابتدا به امکان‌سنجی استفاده از یک چرخة کالینای مافوق گرم برای تولید توان از منابع زمین‌گرمایی در ایران پرداخته شده‌است. بااستفاده از تجزیه و تحلیل ترمودینامیکی و ترمواکونومیکی، تأثیر پارامترهای عملیاتی شامل فشار توربین و غلظت آب- آمونیاک بر عملکرد چرخة کالینای مافوق گرم در دمای منبع حرارتی ˚C170 بررسی شده‌است. نتایج نشان می­دهد در دمای منبع حرارتی ˚C170 و غلظت 65%، بیشترین کار خالص چرخه در فشار توربین  bar33/28 و کمترین هزینة اگزرژی تولید توان در فشار  bar44/19 اتفاق می­افتد. هم‌چنین در فشار ثابت bar22، بیشینة کار خالص و کمینة هزینة اگزرژی تولید توان به‌ترتیب در غلظت %66 و غلظت %33/70 اتفاق می­افتند. نهایتاً کمینه کردن هزینة اگزرژی تولید توان به‌عنوان تابع هدف انتخاب شد و بااستفاده از الگوریتم ژنتیک مقادیر فشار توربین و غلظت آب- آمونیاک به‌طور هم‌زمان بهینه گردید. سرانجام، به‌منظور دست‌یابی به حداکثر عملکرد، برای دماهای مختلف منابع زمین‌گرمایی در ایران مقادیر بهینة فشار و غلظت در جدولی معرفی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Thermoeconomic Optimization of a Superheated Kalina Cycle for Various Geothermal Source Temperatures in Iran

نویسندگان [English]

  • Ehsan Amiri Rad
  • Parisa Kazemiani-Najafabadi
Department of Mechanical Engineering, Center of Computational Energy, Hakim Sabzevari University, Sabzevar, Iran.
چکیده [English]

Geothermal sources are one of the renewable heat sources. In the present study, at first, the feasibility of using a superheated Kalina cycle to generate power by geothermal sources in Iran has been investigated. Using thermodynamic and thermoeconomic analyses, the effect of operating parameters including turbine pressure and water-ammonia concentration on the performance of the superheated Kalina cycle at a heat source temperature of 170˚C has been investigated. The results show that at a heat source temperature of 170˚C and a concentration of 65%, the highest net power of cycle occurs at turbine pressure of 28.33 bar and the lowest exergy cost of power generation happens at the pressure of 19.44bar. Also, at a constant pressure of 22 bar, the maximum net power and minimum exergy cost of power generation occur at the concentration of 66% and 70.33%, respectively. Finally, minimizing the exergy cost of power generation was selected as the objective function and the values of turbine pressure and water-ammonia concentration were optimized simultaneously using a genetic algorithm. Eventually, in order to achieve maximum performance, for different temperatures of geothermal sources in Iran optimal values of pressure and concentration were introduced in a table.

کلیدواژه‌ها [English]

  • Geothermal
  • superheated Kalina cycle
  • thermoeconomic
  • Optimization
  1. Al-alili, A., Hwang, Y. and Radermacher, R., "Review of Solar Thermal Air Conditioning Technologies", International Journal of Refrigeration, Vol. 39, pp. 4–22, (2013).
  2. Amiri Rad, E. and Kazemiani-najafabadi, P., "Thermo-Environmental and Economic Analyses of an Integrated Heat Recovery Steam-Injected Gas Turbine", Energy, Vol. 141, pp. 1940–1954, (2017).
  3. Gazzani, M., Turi, DM., Ghoniem, AF., Macchi, E. and Manzolini, G., "Techno-Economic Assessment of Two Novel Feeding Systems for a Dry-Feed Gasifier in an IGCC Plant with Pd-Membranes for CO2 Capture", International Journal of Greenhouse Gas Control, Vol. 25, pp. 62–78, (2014).
  4. Hanak, DP., Biliyok, C. and Manovic, V., "Efficiency Improvements for the Coal-Fired Power Plant Retrofit with CO2 Capture Plant Using Chilled Ammonia Process", Applied Energy, Vol. 151, pp. 258–272, (2015).
  5. Sheu, EJ. and Ghoniem, A., "Redox Reforming Based, Integrated Solar-Natural Gas Plants: Reforming and Thermodynamic Cycle Efficiency", International Journal of Hydrogen Energy, Vol. 39, pp. 14817–14833, (2014).
  6. Sheu, EJ., Mokheimer, EMA. and Ghoniem. AF., "Dry Redox Reforming Hybrid Power Cycle: Performance Analysis and Comparison to Steam Redox Reforming", International Journal of Hydrogen Energy, Vol. 40, pp. 2939–2949, (2015).
  7. Carapellucci, R. and Giordano, L., "Upgrading Existing Coal-Fired Power Plants Through Heavy-Duty and Aeroderivative Gas Turbines", APPLIED ENERGY, Vol. 156, pp. 86–98, (2015).
  8. Singh, OK., "Performance Enhancement of Combined Cycle Power Plant Using Inlet Air Cooling by Exhaust Heat Operated Ammonia-Water Absorption Refrigeration System", Applied Energy, Vol. 180, pp. 867–879, (2016).
  9. Ratlamwala, TAH. and Dincer, I., "Energetic and Exergetic Investigation of Novel Multi-Flash Geothermal Systems Integrated with Electrolyzers", Journal of Power Sources, Vol. 254, pp. 306–315, (2014).
  10. DiPippo, R., "Geothermal Power Plants : Principles , Applications , Case Studies and Environmental Impact", Third Edit. Butterworth-Heinemann, (2012).
  11. Kanoglu, M. and Bolatturk, A., "Performance and Parametric Investigation of a Binary Geothermal Power Plant by Exergy", Renewable Energy, Vol. 33, pp. 2366–2374, (2008).
  12. Soltani, M., Kashkooli, FM., Dehghani-Sanij, A., Kazemi, AR., Bordbar, N., Farshchi, MJ., et al., "A Comprehensive Study of Geothermal Heating and Cooling Systems", Sustainable Cities and Society, Vol. 44, pp. 793–818, (2019).
  13. Fu, W., Zhu, J., Li, T., Zhang, W. and Li, J., "Comparison of a Kalina Cycle Based Cascade Utilization System with an Existing Organic Rankine Cycle based Geothermal Power System in an Oilfield", Applied Thermal Engineering, Vol. 58, 2, pp. 224–233, (2013).
  14. Prananto, LA., Zaini, IN., Mahendranata, BI., Juangsa, FB., Aziz, M. and Soelaiman, F., "Use of the Kalina Cycle as a Bottoming Cycle in a Geothermal Power Plant: Case Study of the Wayang Windu Geothermal Power Plant", Applied Thermal Engineering, 132, pp. 686–696, (2018).
  15. Andeasen, JG., Meroni, A. and Haglind, F., "A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships", Energies, Vol. 10, 4, pp. 1–23, (2017).
  16. Drescher, U. and Bruggemann, D., "Fluid Selection for the Organic Rankine Cycle ( ORC ) in Biomass Power and Heat Plants", Applied Thermal Engineering, Vol. 27, 1, pp. 223–228, (2007).
  17. Saleh, B., Koglbauer, G., Wendland, M. and Fischer, J., "Working Fluids for Low-Temperature Organic Rankine Cycles", Energy, Vol. 32, 7, pp. 1210–1221, (2007).
  18. Dincer, I. and Kanoglu, M., "Refrigeration Systems and Applications", Second. Wiley, (2010).
  19. [19] Pintoro, A., Ambarita, H., Nur, TB. and Napitupulu, FH., "Performance Analysis of Low Temperature Heat Source of Organic Rankine Cycle for Geothermal Application", IOP Conference Series: Materials Science and Engineering PAPER, Vol. 308, (2018).
  20. Rayegan, R. and Tao, YX., "A Procedure to Select Working Fluids for Solar Organic Rankine Cycles (ORCs)", Renewable Energy, Vol. 36, 2, pp. 659–670, (2011).
  21. Fakeye-Babatunde, A. and Oyedepo-Sunday, O., "A Review of Working Fluids for Organic Rankine Cycle (ORC) Applications", IOP Conf Series: Materials Science and Engineering, Vol. 413, (2018).
  22. Dai, Y., Wang, J. and Gao, L., "Parametric Optimization and Comparative Study of Organic Rankine Cycle (ORC) for Low Grade Waste Heat Recovery", Energy Conversion and Management, Vol. 50, 3, pp. 576–582, (2009).
  23. Kazemiani-najafabadi, P. and Amiri Rad, E., "Optimization of an Improved Power Cycle for Geothermal Applications in Iran", Energy, Vol. 209, pp. 118381, (2020).
  24. Mahmoudi, SMS., Pourreza, A., Akbari, AD. and Yari, M., "Exergoeconomic Evaluation and Optimization of a Novel Combined Augmented Kalina Cycle/ Gas Turbine-Modular Helium Reactor", Applied Thermal Engineering, Vol. 109, pp. 109–120, (2016).
  25. Miao, Z., Zhang, K., Wang, M. and Xu, J., "Thermodynamic Selection Criteria of Zeotropic Mixtures for Subcritical Organic Rankine Cycle", Energy, Vol. 167, pp. 484–497, (2019).
  26. Dawo, F., Wieland, C. and Spliethoff, H., "Kalina Power Plant Part Load Modeling: Comparison of Different Approaches to Model Part Load Behavior and Validation on Real Operating Data", Energy, Vol. 174, pp. 625–537, (2019).
  27. Alelyani, SM., Fette, NW., Stechel, EB., Doron, P. and Phelan, PE., "Techno-Economic Analysis of Combined Ammonia-Water Absorption Refrigeration and Desalination", Energy Conversion and Management, Vol. 143, pp. 493–504, (2017).
  28. Fallah, M., Mahmoudi, SMS., Yari, M. and Ghiasi, RA., "Advanced Exergy Analysis of the Kalina Cycle Applied for Low Temperature Enhanced Geothermal System", Energy Conversion and Management, Vol. 108, pp. 190–201, (2016).
  29. Kalina, AI., "Combined-Cycle System With Novel Bottoming Cycle", Journal of Engineering for Gas Turbines and Power, Vol. 106, pp. 737–742, (1984).
  30. Nguyen, TQ., Slawnwhite, JD. and Boulama KG., "Power Generation from Residual Industrial Heat", Energy Conversion and Management, 51, pp. 2220–2229, (2010).
  31. Dipippo, R., "Second Law Assessment of Binary Plants Generating Power from Low-Temperature Geothermal Fluids", Geothermics, Vol. 33, 5, pp. 565–586, (2004).
  32. Modi, A. and Haglind, F., "Thermodynamic Optimisation and Analysis of Four Kalina Cycle Layouts for High Temperature Applications", Applied Thermal Engineering, Vol. 76, pp. 196–205, (2015).
  33. Arslan, O., "Exergoeconomic Evaluation of Electricity Generation by the Medium Temperature Geothermal Resources , Using a Kalina Cycle : Simav Case Study", International Journal of Thermal Sciences, Vol. 49, 9, pp. 1866–1873, (2010).
  34. Rodríguez, CEC., Palacio, JCE., Venturini, OJ., Silva Lora, EE., Cobas, MV., Santos, DM., et al., "Exergetic and Economic Comparison of ORC and Kalina Cycle for Low Temperature Enhanced Geothermal System in Brazil", Applied Thermal Engineering, Vol. 52, 1, pp. 109–119, (2013).
  35. Fu, W., Zhu, J., Zhang, W. and Lu, Z., "Performance Evaluation of Kalina Cycle Subsystem on Geothermal Power Generation in the Oilfield", Applied Thermal Engineering, Vol. 54, 2, pp. 497–506, (2013).
  36. Hettiarachchi, HDM., Golubovic, M., Worek, WM. and Ikegami, Y., "The Performance of the Kalina Cycle System 11 (KCS-11) With Low-Temperature Heat Sources", Journal of Energy Resources Technology, Vol. 129, 3, pp. 243–247, (2007).
  37. Noorollahi, Y., Yousefi, H., Itoi, R. and Ehara, S., "Geothermal Energy Resources and Development in Iran", Renewable and Sustainable Energy Reviews, 13, No. 5, pp. 1127–1132, (2009).
  38. Noorollahi, Y., Ghasempour, R. and Jalilinasrabady, S., "A GIS Based Integration Method for Geothermal Resources Exploration and Site Selection", Energy Exploration and Exploitation, 33, No. 2, pp. 243–258, (2015).
  39. Noorollahi, Y., Shabbir, MS., Siddiqi, AF., Ilyashenko, LK. and Ahmadi, E., "Review of Two Decade Geothermal Energy Development in Iran, Benefits, Challenges, and Future Policy", Geothermics, Vol. 77, pp. 257–266, (2019).
  40. Yousefi, H., Noorollahi, Y., Ehara, S., Itoi, R. and Yousefi, A., "Geothermics Developing the Geothermal Resources Map of Iran", Geothermics, Vol. 39, 2, pp. 140–151, (2010).
  41. Hassani Mokarram, N. and Mosaffa, AH., "Investigation of the Thermoeconomic Improvement of Integrating Enhanced Geothermal Single Flash with Transcritical Organic Rankine Cycle", Energy Conversion and Management, Vol. 213, pp. 112831, (2020).
  42. Mohammadkhani, F., Shokati, N., Mahmoudi, SMS., Yari, M. and Rosen, MA., "Exergoeconomic Assessment and Parametric Study of a Gas Turbine-Modular Helium Reactor Combined with Two Organic Rankine Cycles", Energy, Vol. 65, pp. 533–543, (2014).
  43. Heo, J-H., Kim, M-K., Park, G-P., Yoon, YT., Park, JK., Lee, S-S., et al., "A Reliability-Centered Approach to an Optimal Maintenance Strategy in Transmission Systems Using a Genetic Algorithm", IEEE Transactions on Power Delivery, Vol. 26, 4, pp. 2171–2179, (2011).
  44. Kazemiani-najafabadi, P. and Amiri Rad, E., "Multi-Objective Optimization of a Novel Offshore CHP Plant Based on a 3E Analysis", Energy, Vol. 224, pp. 120135, (2021).
  45. Wang, J., Wang, J., Zhao, P. and Dai, Y., "Proposal and Thermodynamic Assessment of a New Ammonia-Water Based Combined Heating and Power (CHP) System", Energy Conversion and Management, Vol. 184, pp. 277–289, (2019).