پیوندزنی سطح یک نوع الیاف نایلونی با استفاده از مخلوط دو مونومر اکریلیک و بهینه‌سازی پارامترهای مربوطه توسط یک نرم‌افزار متداول طراحی آزمایش

نوع مقاله : مقاله پژوهشی

نویسندگان

فردوسی مشهد

چکیده

زیست رسوب‌گذاری دریایی به تجمعی از انواع ارگانیسم‌ها برسازه‌های فرورفته در آب دریا گفته می‌شود. این پدیده اثرات مخربی بر سازه‌های شناور در آب مانند کشتی‌ها، قفس‌های پرورش ماهی و غیره دارد. به‌منظور کاهش رسوب‌گذاری زیستی بر روی الیاف یک نوع نایلون، مخلوط دو مونومر اکریلیک، 2 - هیدروکسی اتیل متاکریلات و متیل آکریلات به روش پیش‌تابش و در شرایط مختلف بر روی الیاف فوق پیوند زده شد. سپس پارامترهای درصد پیوندزنی و درصد هومو-کو پلیمر با تغییر متغیرهای عملیاتی مانند دمای واکنش (℃۹۰-۶۰)، زمان واکنش h) ۴-۱)، زمان پیش‌تابش min) ۴۰-۱۰) و غلظت آغازگر (۹-۳%)  اندازه‌گیری شده و با مقادیر محاسبه شده توسط  یک نرم‌افزار متداول طراحی آزمایش (®Design-expert) مقایسه گردیده و نتایج مورد بحث قرار گرفتند. جهت بهینه‌سازی نتایج توسط نرم‌افزار و بررسی اثر متقابل متغیرهای فوق جهت پیش‌بینی پارامترهای مذکور، از روش پاسخ سطح و طراحی نقاط مرکزی با استفاده از ۴ متغیر و ۲ سطح پاسخ استفاده شد. افزایش زمان تابش و غلظت آغازگر باعث افزایش درصد پیوندزنی به دلیل افزایش مراکز فعّال بر سطح الیاف شدند. به کمک تحلیل جدول آنالیز واریانس و مقدار متغیر p-valuee با بازه اطمینان ۰۵/۰، پارامترهای مهم در مدل به ترتیب اهمّیّت، دمای واکنش، زمان واکنش، زمان پیش‌تابش و غلظت آغازگر تشخیص داده شدند. همچنین صحت آماری نتایج به‌دست‌آمده به کمک مقادیر متغیرهای آماری مانند ضریب مشخصه‌سازی ( ۹۶٪)، ضریب مشخص‌سازی تنظیم شده (۹۳٪) و تناسب دقّت (۳۰۲/۳۰) مورد تأیید قرار گرفتند. در شرایط بهینه معرفی شده توسط نرم‌افزار، مقادیر پیش‌بینی‌شده توسط مدل پیشنهادی نرم‌افزار عبارت بودند از درصد پیوندزنی، ۵۹/۳۸ و هومووکوپلیمر ۴۲/۴۳ در صد که با مقادیر تجربی به ترتیب ۸۹/۳۷ و ۹۸/۴۲ درصد تطابق مناسبی داشتند. همچنین دو معادله جهت پیش‌بینی مقادیر پارامترها با تغییر متغیرهای مورد مطالعه توسط نرم‌افزار ارائه گردیدند.

کلیدواژه‌ها


عنوان مقاله [English]

The Grafting of a Nylon Fiber Surface by a Mixture of Two Acrylic Monomers and the Evaluation of Optimum Values by using a Traditional Design of Experiment Software

نویسندگان [English]

  • Mohammad Khosravi
  • Saeed Ostad Movahed
چکیده [English]

Bio-fouling as a worldwide marine industries concern is the accumulation of micro and macro-organisms on the submersed surfaces in the sea water. It has destructive effects on the sunk parts of the ships, fish cages and all other marine submersed structures. To reduce bio-fouling on the nylon fibers a dual mix of 2-Hydroxy ethyl methacrylate(HEMA) and methyl acrylate(MA) was grafted on the fiber surface using a pre-irradiation technique in different conditions. Subsequently, degree of grafting and homo and or co-polymer % of the aforementioned monomers at different operative parameters including reaction temperatures (60-90℃), and times (1-4h), pre-irradiation time (10-40min) and also initiator concentration (3-9wt%) were measured and the results were compared and discussed with those calculated values by a traditional design of experiment software (Design expert®). The optimum grafting conditions and the interaction between above mentioned parameters were evaluated by the software using four variables and two surface responses with central point design method. It found that increasing pre-irradiation time and also initiator concentration improved the grafting % of the monomers on the fiber surface. The reason referred to increasing the active sites on the fiber surface after pre-irradiation. With the aid of variance analysis and considering p-values variable with 0.05 confidence interval, it revealed that the important parameters lied down in the order of reaction temperature, reaction time, pre-irradiation time and initiator concentration. Also, the results were confirmed statistically by the characteristic coefficient, adjustment coefficient and fit precision of 96%,93% and 30.302, respectively. The real values for degree of grafting and also homo and co-polymer percent were 47.9% and 41.15% respectively. They were in conformity with predicted values by mathematical model with the values of 38.59 and 43.42%. Also, two equations were proposed by the software for calculation of the aforementioned parameters with studied operative parameters.

کلیدواژه‌ها [English]

  • Nylon Fibers
  • 2-Hydroxy Ethyl Methacrylate
  • Methyl Acrylate
  • Grafting percent (%)
  • Design of Experiment
1. Magin, C.M., Cooper, S.P. and Brennan, A.B., "Non-toxic antifouling strategies", Mater. Today, Vol. 1, 13(4), pp. 36-44, (2010).
2. Margaillan, M. and Bressy A., "Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings", Chemical Reviews, Vol. 11, 112(8), pp. 4347-90, (2012).
3. Finnie. A.A. and Williams, D.N., "Paint and coatings technology for the control of marine fouling", Biofouling, Vol. 29(10), pp. 185-206, (2010).
4. Grozea, C.M. and Walker, G.C., "Approaches in designing non-toxic polymer surfaces to deter marine biofouling", Soft Matter, Vol. 5(21), pp. 4088-100, (2009).
5. Woods Hole Oceanographic Institution and United States. Navy Dept. Bureau of Ships, Marine fouling and its prevention, (No. 580), United States Naval Institute, (1952).
6. Alzieu, C.L., Sanjuan, J., Deltreil, J.P. and Borel, M., "Tin contamination in Arcachon Bay: effects on oyster shell anomalies", Marine Pollution Bulletin, Vol. 17(11), pp. 494-498, (1986).
7. Alzieu, C., "Environmental impact of TBT: the French experience", Science of the Total Environment, Vol. 258(1), pp. 99-102, (2000).
8. Terlizzi, A., Fraschetti, S., Gianguzza, P., Faimali, M. and Boero, F., "Environmental impact of antifouling technologies: state of the art and perspectives", Aquatic Conservation: Marine and Freshwater Ecosystems, Vol. 11(4), pp. 311-317, (2001).
9. Hellio, C., Marechal, J.P., Da Gama, B.A.P., Pereira, R.C. and Clare, A.S., "Natural marine products with antifouling activities", Advances in Marine Antifouling Coatings and Technologies, pp. 572-622, (2009).
10. Neoh, K.G. and Kang, E.T., "Combating bacterial colonization on metals via polymer coatings: relevance to marine and medical applications", ACS Applied Materials & Interfaces, Vol. 3(8), pp. 2808-2819, (2011).
11. Faure, E., Falentin-Daudre, C., Jerôme, C., Lyskawa, J., Fournier, D., Woisel, P. and Detrembleur, C., "Catechols as versatile platforms in polymer chemistry", Progress in Polymer Science, Vol. 38(1), pp. 236-270, (2013).
12. Liu, Y., Tan, T.T.Y., Yuan, S. and Choong, C., "Multifunctional P (PEGMA)–REDV conjugated titanium surfaces for improved endothelial cell selectivity and hemocompatibility", Journal of Materials Chemistry B, Vol. 1(2), pp. 157-167, (2013).
13. Yah, W.O., Xu, H., Soejima, H., Ma, W., Lvov, Y. and Takahara, A., "Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen", Journal of the American Chemical Society, Vol. 134(29), pp. 12134-12137, (2012).
14. Fan, X., Lin, L., Dalsin, J.L. and Messersmith, P.B., "Biomimetic anchor for surface-initiated polymerization from metal substrates", Journal of the American Chemical Society, Vol. 127(45), pp. 15843-15847, (2005).
15. Yuan, S., Wan, D., Liang, B., Pehkonen, S.O., Ting, Y.P., Neoh, K.G. and Kang, E.T., "Lysozyme-coupled poly (poly (ethylene glycol) methacrylate)− stainless steel hybrids and their antifouling and antibacterial surfaces", Langmuir, Vol. 27(6), pp. 2761-2774, (2011).
16. Xu, L.Q., Jiang, H., Neoh, K.G., Kang, E.T. and Fu, G.D., "Poly (dopamine acrylamide)-co-poly (propargyl acrylamide) -modified titanium surfaces for ‘click’functionalization", Polymer Chemistry, Vol. 3(4), pp. 920-927, (2012).
17. Yang, W.J., Cai, T., Neoh, K.G., Kang, E.T., Dickinson, G.H., Teo, S.L.M. and Rittschof, D., "Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel", Langmuir, Vol. 27(11), pp. 7065-7076, (2011).
18. Chen, A., Peng, H., Blakey, I. and Whittaker, A.K., "Biocidal polymers: a mechanistic overview", Polymer Reviews, Vol. 57(2), pp. 276-310, (2017).
19. Krishnan, S., Weinman, C.J. and Ober, C.K., "Advances in polymers for anti-biofouling surfaces", Journal of Materials Chemistry, Vol. 18(29), pp. 3405-3413, (2008).
20. Kingshott, P., Thissen, H. and Griesser, H.J., "Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins", Biomaterials, Vol. 23(9), pp. 2043-2056, (2002).
21. Schilp, S., Rosenhahn, A., Pettitt, M.E., Bowen, J., Callow, M.E., Callow, J.A. and Grunze, M., "Physicochemical properties of (ethylene glycol)-containing self-assembled monolayers relevant for protein and algal cell resistance", Langmuir, Vol. 25(17), pp. 10077-10082, (2009).
22. Statz, A., Finlay, J., Dalsin, J., Callow, M., Callow, J.A. and Messersmith, P.B., "Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels", Biofouling, 22(6), pp. 391-399, (2006).
23. Harder, P., Grunze, M., Dahint, R., Whitesides, G.M. and Laibinis, P.E., "Molecular conformation in oligo (ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption", The Journal of Physical Chemistry B, Vol. 102(2), pp. 426-436, (1998).
24. Murosaki, T., Ahmed, N. and Gong, J.P., "Antifouling properties of hydrogels", Science and Technology of Advanced Materials, Vol. 12(6), pp. 064706, (2012).
25. Lundberg, P., Bruin, A., Klijnstra, J.W., Nyström, A.M., Johansson, M., Malkoch, M. and Hult, A., "Poly (ethylene glycol)-Based Thiol-ene Hydrogel Coatings− Curing Chemistry, Aqueous Stability, and Potential Marine Antifouling Applications", ACS Applied Materials & Interfaces, Vol. 2(3), pp. 903-912, (2010).
26. Murosaki, T., Noguchi, T., Hashimoto, K., Kakugo, A., Kurokawa, T., Saito, J., Chen, Y.M., Furukawa, H. and Gong, J.P., "Antifouling properties of tough gels against barnacles in a long-term marine environment experiment", Biofouling, Vol. 25(7), pp. 657-666, (2009).
27. Jiang, S. and Cao, Z., "Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications, Advanced Materials, Vol. 22(9), pp.920-932, (2010).
28. Chen, S., Zheng, J., Li, L. and Jiang, S., "Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials", Journal of the American Chemical Society, Vol. 127(41), pp. 14473-14478, (2005).
29. He, Y., Hower, J., Chen, S., Bernards, M.T., Chang, Y. and Jiang, S., "Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water", Langmuir, Vol. 24(18), pp.10358-10364, (2008).
30. Zhang, Z., Finlay, J.A., Wang, L., Gao, Y., Callow, J.A., Callow, M.E. and Jiang, S., "Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings", Langmuir, Vol. 25(23), pp. 13516-13521, (2009).
31. Li, Y., Liu, C.M., Yang, J.Y., Gao, Y.H., Li, X.S., Que, G.H. and Lu, J.R., "Anti-biofouling properties of amphiphilic phosphorylcholine polymer films", Colloids and Surfaces B: Biointerfaces, Vol. 85(2), pp. 125-130, (2011).
32. Aldred, N., Li, G., Gao, Y., Clare, A.S. and Jiang, S., "Modulation of barnacle (Balanus mphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings", Biofouling, Vol. 26(6), pp. 673-683, (2010).
33. Morra, M., "Engineering of biomaterials surfaces by hyaluronan", Biomacromolecules, Vol. 6(3),
pp. 1205-1223, (2005).
34. Ederth, T., Ekblad, T., Pettitt, M.E., Conlan, S.L., Du, C.X., Callow, M.E., Callow, J.A., Mutton, R., Clare, A.S., D’Souza, F. and Donnelly, G., "Resistance of galactoside-terminated alkanethiol self-assembled monolayers to marine fouling organisms", ACS Applied Materials & Interfaces, Vol. 3(10), pp. 3890-3901, (2011).
35. Cao, X., Pettit, M.E., Conlan, S.L., Wagner, W., Ho, A.D., Clare, A.S., Callow, J.A., Callow, M.E., Grunze, M. and Rosenhahn, A., "Resistance of polysaccharide coatings to proteins, hematopoietic cells, and marine organisms", Biomacromolecules, Vol. 10(4), pp. 907-915, (2009).
36. De Kerchove, A.J. and Elimelech, M., "Calcium and magnesium cations enhance the adhesion of motile and nonmotile Pseudomonas aeruginosa on alginate films", Langmuir, Vol. 24(7), pp. 3392-3399, (2008).
37. Lejars, M., Margaillan, A. and Bressy, C., "Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings", Chemical Reviews, Vol. 112(8), pp. 4347-4390, (2012).
38. Beigbeder, A., Degee, P., Conlan, S.L., Mutton, R.J., Clare, A.S., Pettitt, M.E., Callow, M.E., Callow, J.A. and Dubois, P., "Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings", Biofouling, Vol. 24(4), pp. 291-302, (2008).
39. Beigbeder, A., Mincheva, R., Pettitt, M.E., Callow, M.E., Callow, J.A., Claes, M. and Dubois, P., "Marine fouling release silicone/carbon nanotube nanocomposite coatings: on the importance of the nanotube dispersion state", Journal of Nanoscience and Nanotechnology, Vol. 10(5), pp. 2972-2978, (2010).
40. Beigbeder, A., Labruyère, C., Viville, P., Pettitt, M.E., Callow, M.E., Callow, J.A., Bonnaud, L., Lazzaroni, R. and Dubois, P., "Surface and fouling-release properties of silicone/Organomodified Montmorillonite coatings", Journal of Adhesion Science and Technology, Vol. 25(14), pp.1689-1700, (2011).
41. Fang, J., Kelarakis, A., Wang, D., Giannelis, E.P., Finlay, J.A., Callow, M.E. and Callow, J.A., "Fouling release nanostructured coatings based on PDMS-polyurea segmented copolymers", Polymer, Vol. 51(12), pp. 2636-2642, (2010).
42. Ekin, A., Webster, D.C., Daniels, J.W., Stafslien, S.J., Casse, F., Callow, J.A. and Callow, M.E., "Synthesis, formulation, and characterization of siloxane–polyurethane coatings for underwater marine applications using combinatorial high-throughput experimentation", Journal of Coatings Technology and Research, Vol. 4(4), pp. 435, (2007).
43. Shivapooja, P., Wang, Q., Orihuela, B., Rittschof, D., Lopez, G.P. and Zhao, X., "Bioinspired surfaces with dynamic topography for active control of biofouling", Advanced Materials, Vol. 25(10), pp. 1430-1434, (2013).
44. Huang, J., Koepsel, R.R., Murata, H., Wu, W., Lee, S.B., Kowalewski, T., Russell, A.J. and Matyjaszewski, K., "Nonleaching antibacterial glass surfaces via “grafting onto”: the effect of the number of quaternary ammonium groups on biocidal activity", Langmuir, Vol. 24(13), pp. 6785-6795, (2008).
45. Li, P., Poon, Y.F., Li, W., Zhu, H.Y., Yeap, S.H., Cao, Y., Qi, X., Zhou, C., Lamrani, M., Beuerman, R.W. and Kang, E.T., "A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability", Nature Materials, Vol. 10(2), pp. 149-156, (2011).
46. Petrone, L., Di Fino, A., Aldred, N., Sukkaew, P., Ederth, T., Clare, A.S. and Liedberg, B., "Effects of surface charge and Gibbs surface energy on the settlement behaviour of barnacle cyprids (Balanus amphitrite)", Biofouling, Vol. 27(9), pp. 1043-1055, (2011).
47. Saleh, N., Ostad. Movahed, S. Attarbashi, F., "The Study on the anti-biofouling effects of the grafted polyamided fibers by several vinyl chemicals, Journal of Applied Polymer Science, Vol. 135, pp.
46760-46771, (2018).
48. Bucheñska, J., "Modification of polyamide fibers (PA6) by grafting polyacrylamide (PAM)", Journal of Applied Polymer Science, Vol. 58(10), pp. 1901-1911, (1995).
49. Li, H., "Design of Experiments Software, DOE software", The Chemical Information Network, July 17, (2003).
50. Hardin, R.H. and Sloane, N.J.A., "A New Approach to the Construction of Optimal Designs", Journal of Statistical Planning and Inference, Vol. 37, pp. 339-369, (1993).
51. Montgomery, D.C. and Runger, G.C., "Applied statistics and probability for engineers", John Wiley & Sons, (2010).
52. Asadi, N. and Zilouei, H., "Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes", Bioresource Technology, Vol. 227, pp. 335-344, (2017).
53. Gheshlaghi. R.E., Scharer, J.M., Moo-Young, M. and Douglas, PL., "Application of statistical design for the optimization of amino acid separation by reverse-phase HPLC", Analytical Biochemistry, Vol. 383(1), pp. 93-102, (2008).
CAPTCHA Image