Stability Analysis of Nano-wire Made Tweezers in Magnetic Flux

Document Type : Original Article

Authors

Department of Mechanical Engineering, University of Torbat Heydarieh, Torbat Heydarieh, Iran

Abstract

The enormous application of nano-tweezes in modern technologies and biological purposes leads to new operation situations for these devices, such as an external magnetic field. In this paper, the pull-in behavior of nano-wire-made tweezers immersed in a longitudinal magnetic field is simulated. As the scale dependency can be dominant in ultra-small structures, the constitutive equation is developed based on the consistent couple stress theory. In addition, the influence of van der Waals force and Casimir force are considered in the developed model. A semi-analytical model based on the Homotopy perturbation method is presented to solve the nonlinear governing equation. The influence of different phenomena including size dependency, Casimir force, van der Waals force, and the magnetic field on the pull-in voltage and tweezering range of nano-wire manufactured tweezers is investigated. The obtained results demonstrated that the magnetic field has a considerable effect on the pull-in instability and operating range of nano-tweezers.

Keywords

Main Subjects


  1. Farrokhabadi, A., Rach, R., and Abadyan, M., "Modeling the static response and pull-in instability of CNT nanotweezers under the Coulomb and van der Waals attractions", Physica E: Low-dimensional Systems and Nanostructures, Vol. 53, pp. 137-145, (2013).
  2. Wang, G. W., Zhang, Y., Zhao, Y. P., and Yang, G.-T., "Pull-in instability study of carbon nanotube tweezers under the influence of van der Waals forces", Journal of Micromechanics and Microengineering, Vol. 14(8), pp. 1119, (2004).
  3. Farrokhabadi, A., Koochi, A., Kazemi, A., and Abadyan, M., "Effects of size-dependent elasticity on stability of nanotweezers", Applied Mathematics and Mechanics, Vol. 35(12), pp. 1573-1590, (2014).
  4. Ramezani, A., "Stability analysis of electrostatic nanotweezers", Physica E: Low-dimensional Systems and Nanostructures, Vol. 43(10), pp. 1783-1791, (2011).
  5. Keivani, M., Koochi, A., Sedighi, H. M., Abadyan, M., Farrokhabadi, A., and Shahedin, A. M., "Effect of surface layer on electromechanical stability of tweezers and cantilevers fabricated from conductive cylindrical nanowires", Surface Review and Letters, Vol. 23(02), pp. 1550101, (2016).
  6. Koochi, A., Hosseini-Toudeshky, H., and Abadyan, M., "A modified model for stability analysis of narrow-width NEMS tweezers: Corrections due to surface layer, scale dependency and force distributions", scientiairanica, Vol. 24(2), pp. 673-683, (2017).
  7. Moon, F. and Pao, Y.H., "Magnetoelastic buckling of a thin plate", Journal of Applied Mechanics, Vol. 35(1), pp. 53-58, (1968).
  8. Moon, F. and Pao, Y. H., "Vibration and dynamic instability of a beam-plate in a transverse magnetic field", Journal of Applied Mechanics, Vol. 36(1), pp. 92-100, (1969).
  9. Miya, K., Takagi, T., and Ando, Y., "Finite-element analysis of magnetoelastic buckling of ferromagnetic beam plate", Journal of Applied Mechanics, Vol. 47(2), pp. 377-382, (1980).
  10. Eringen, A. C., "Theory of electromagnetic elastic plates", International Journal of Engineering Science, Vol. 27(4), pp. 363-375, (1989).
  11. Lee, J. S., "Destabilizing effect of magnetic damping in plate strip", Journal of Engineering Mechanics, Vol. 118(1), pp. 161-173, (1992).
  12. Shih, Y. S., Wu, G. Y., and Chen, E. J., "Transient Vibrations of a Simply-Supported Beam with Axial Loads and Transverse Magnetic Fields", Journal of Structural Mechanics, Vol. 26(2), pp. 115-130, (1998).
  13. Librescu, L., Hasanyan, D., and Ambur, D. R., "Electromagnetically conducting elastic plates in a magnetic field: modeling and dynamic implications", International Journal of Non-Linear Mechanics, Vol. 39(5), pp. 723-739, (2004).
  14. Wu, G., "The analysis of dynamic instability and vibration motions of a pinned beam with transverse magnetic fields and thermal loads", Journal of Sound and Vibration, Vol. 284(1-2), pp. 343-360, (2005).
  15. Kojima, H., Nagaya, K., Shiraishi, H., and Yamashita, A., "Nonlinear vibrations of a beam with a mass subjected to alternating electromagnetic force", Bulletin of JSME, Vol. 28(237), pp. 468-474, (1985).
  16. Liu, M. F. and Chang, T. P., "Vibration analysis of a magneto-elastic beam with general boundary conditions subjected to axial load and external force", Journal of Sound and Vibration, Vol. 288(1-2), pp. 399-411, (2005).
  17. Kiani, K., "Magneto-elasto-dynamic analysis of an elastically confined conducting nanowire due to an axial magnetic shock", Physics Letters A, Vol. 376(20), pp. 1679-1685, (2012).
  18. Kiani, K., "Magneto–thermo–elastic fields caused by an unsteady longitudinal magnetic field in a conducting nanowire accounting for eddy-current loss", Materials Chemistry and Physics, Vol. 136(2-3), pp. 589-598, (2012).
  19. Narendar, S., Gupta, S., and Gopalakrishnan, S., "Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler–Bernoulli beam theory", Applied Mathematical Modelling, Vol. 36(9), pp. 4529-4538, (2012).
  20. Yaghoobi, M. and Koochi, A., "Electromagnetic instability analysis of functionally graded tapered nano-tweezers", Physica Scripta, Vol. 96(8), pp. 085701, (2021).
  21. Barati, A., Adeli, M.M., and Hadi, A., "Static torsion of bi-directional functionally graded microtube based on the couple stress theory under magnetic field", International Journal of Applied Mechanics, Vol. 12(2), pp. 2050021, (2020).
  22. Ghaffari, S. and Abdelkefi, A., "Thermoelastic modeling and comparative analysis of biomass sensors under rippling deformation and magnetic field", Applied Mathematical Modelling, Vol. 92, pp. 196-222, (2021).
  23. Sedighi, H. M., Malikan, M., Valipour, A., and Żur, K. K., "Nonlocal vibration of carbon/boron-nitride nano-hetero-structure in thermal and magnetic fields by means of nonlinear finite element method", Journal of Computational Design and Engineering, Vol. 7(5), pp. 591-602, (2020).
  24. Koochi, A., Abadyan, M., and Gholami, S., "Electromagnetic instability analysis of nano-sensor", The European Physical Journal Plus, Vol. 136(1), pp. 1-12, (2021).
  25. Sedighi, H. M., Ouakad, H.M., Dimitri, R., and Tornabene, F., "Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment", Physica Scripta, Vol. 95(6), p. 065204, (2020).
  26. Ejike, U. B., "The plane circular crack problem in the linearized couple-stress theory", International Journal of Engineering Science, Vol. 7(9), pp. 947-961, (1969).
  27. Yang, F., Chong, A., Lam, D. C. C., and Tong, P., "Couple stress based strain gradient theory for elasticity", International journal of solids and structures, Vol. 39(10), pp. 2731-2743, (2002).
  28. Eringen, A.C. and Edelen, D., "On nonlocal elasticity", International Journal of Engineering Science, Vol. 10(3), pp. 233-248, (1972).
  29. Lam, D.C., Yang, F., Chong, A., Wang, J., and Tong, P., "Experiments and theory in strain gradient elasticity", Journal of the Mechanics and Physics of Solids, Vol. 51(8), pp. 1477-1508, (2003).
  30. Hadjesfandiari, A. R. and Dargush, G. F., "Couple stress theory for solids", International Journal of Solids and Structures, Vol. 48(18), pp. 2496-2510, (2011).
  31. Kiani, K., "Vibration and instability of a single-walled carbon nanotube in a three-dimensional magnetic field", Journal of Physics and Chemistry of Solids, Vol. 75(1), pp. 15-22, (2014).
  32. Hasanyan, D.J., Librescu, L., and Ambur, R.D., "Buckling and postbuckling of magnetoelastic flat plates carrying an electric current", International Journal of Solids and Structures, Vol. 43, pp. 4971–4996, (2006).
  33. Hayt J., W. H., Buck, J.A., and Akhtar, M. J., "Engineering Electromagnetics", McGraw-Hill Education, (2020).
  34. Boström, M. and Sernelius, B. E., "Fractional van der Waals interaction between thin metallic films", Physical Review B, Vol. 61(3), pp. 2204, (2000).
  35. Klimchitskaya, G., Mohideen, U., and Mostepanenko, V., "Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals", Physical Review A, Vol. 61(6), pp. 062107, (2000).
  36. Zhao, Y. P., Wang, L., and Yu, T., "Mechanics of adhesion in MEMS—a review", Journal of Adhesion Science and Technology, Vol. 17(4), pp. 519-546, (2003).
  37. He, J. H., "Homotopy perturbation technique", Computer methods in applied mechanics and engineering, Vol. 178(3-4), pp. 257-262, (1999).
  38. Chang, J., Min, B.K., Kim, J., Lee, S.J., and Lin, L., "Electrostatically actuated carbon nanowire nanotweezers", Smart materials and structures, Vol. 18(6), pp. 065017, (2009)
CAPTCHA Image