1. Lima, B.S. and Ebecken, N.F., "A comparison of models for uncertainty analysis by the finite element method", Finite Elements in Analysis and Design, Vol. 34, No. 2, pp. 211-232, (2000).
2. Noh, H.C. and Park, T., "Monte Carlo simulation-compatible stochastic field for application to expansion-based stochastic finite element method", Computers & structures, Vol. 84, No. 31, pp. 2363-2372, (2006).
3. Stefanou, G., "The stochastic finite element method: past, present and future", Computer Methods in Applied Mechanics and Engineering, Vol. 198, No. 9, pp. 1031-1051, (2009).
4. Chakraborty, S. and Dey, S., "A stochastic finite element dynamic analysis of structures with uncertain parameters", International Journal of Mechanical Sciences, Vol. 40, No. 11, pp. 1071-1087, (1998).
5. Sepahvand, K., Marburg, S. and Hardtke, H.J., "Stochastic free vibration of orthotropic plates using generalized polynomial chaos expansion", Journal of Sound and Vibration, Vol. 331, No. 1, pp. 167-179, (2012).
6. Shaker, A., Abdelrahman, W.G., Tawfik, M. and Sadek, E., "Stochastic finite element analysis of the free vibration of laminated composite plates", Computational Mechanics, Vol. 41, No. 4, pp. 493-501, (2008).
7. Shaker, A., Abdelrahman, W., Tawfik, M. and Sadek, E., "Stochastic finite element analysis of the free vibration of functionally graded material plates", Computational Mechanics, Vol. 41, No. 5, pp. 707-714, (2008).
8. Dey, S., Mukhopadhyay, T. and Adhikari, S., "Stochastic free vibration analysis of angle-ply composite plates–a RS-HDMR approach", Composite Structures, Vol. 122, pp. 526-536, (2015).
9. Talha, M. and Singh, B., "Stochastic vibration characteristics of finite element modelled functionally gradient plates", Composite Structures, Vol. 130, pp. 95-106, (2015).
10. Chakraborty, S., Mandal, B., Chowdhury, R. and Chakrabarti, A., "Stochastic free vibration analysis of laminated composite plates using polynomial correlated function expansion", Composite Structures, Vol. 135, pp. 236-249, (2016).
11. Nayak, A. and Satapathy, A., "Stochastic damped free vibration analysis of composite sandwich plates", Procedia Engineering, Vol. 144, pp. 1315-1324, (2016).
12. Graham, L. and Siragy, EF, "Stochastic finite-element analysis for elastic buckling of stiffened panels", Journal of engineering mechanics, Vol. 127, No. 1, pp. 91-97, (2001).
13. Onkar, A., Upadhyay, C. and Yadav, D., "Stochastic buckling analysis of laminated plates under shear and compression", AIAA journal, Vol. 45, No. 8, pp. 2005-2014, (2007).
14. Onkar, A., Upadhyay, C. and Yadav, D., "Generalized buckling analysis of laminated plates with random material properties using stochastic finite elements", International journal of mechanical sciences, Vol. 48, No. 7, pp. 780-798, (2006).
15. Kamiński, M. and Świta, P., "Generalized stochastic finite element method in elastic stability problems", Computers & Structures, Vol. 89, No. 11, pp. 1241-1252, (2011).
16. Talha, M. and Singh, B., "Stochastic perturbation-based finite element for buckling statistics of FGM plates with uncertain material properties in thermal environments", Composite Structures, Vol. 108, pp. 823-833, (2014).
17. Li, J., Tian, X., Han, Z. and Narita, Y., "Stochastic thermal buckling analysis of laminated plates using perturbation technique", Composite Structures, Vol. 139, pp. 1-12, (2016).
18. Szilard, R., "Theories and applications of plate analysis: classical, numerical and engineering methods": John Wiley & Sons, (2004).
19. Quek, S.S. and Liu, G.R., "Finite Element Method: A Practical Course": Elsevier Science, (2003).
Send comment about this article