تحلیل عددی پدیده‌ی اختلاط مغناطیسی در یک جریان الکترواسموتیک بین دو صفحه موازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه فنی و حرفه‌ای خراسان جنوبی،آموزشکده این حسام، بیرجند.

2 مهندسی مکانیک، دانشگاه بیرجند، بیرجند

3 مهندسی مکانیک، دانشگاه فردوسی مشهد، مشهد.

چکیده

در مقاله حاضر، اختلاط در جریان‌ الکترواسموتیک در حضور یک میدان مغناطیسی با سه موقعیت مختلف مکانی به‌صورت عددی مطالعه و شبیه‌سازی شده است. هندسه جریان یک مجرای دوبعدی بین دو صفجه موازی است و جریان مورد نظر تراکم ناپذیر، دائم و آرام فرض شده است. معادلات حاکم بر مسأله، شامل معادلات اندازه حرکت اصلاح شده (ناویر-استوکس) برای میدان جریان سیال، معادلات میدان‌های پتانسیل الکتریکی خارجی و داخلی، معادلات توزیع غلظت یون‌های مثبت و منفی (ارنست-پلانک)، معادله میدان مغناطیسی و معادله‌ی غلظت گونه‌ها به روش عددی حجم محدود حل شده است.به منظور اعتبارسنجی برنامه عددی، یک جریان ایده‌آل الکترواسموتیک که در آن سراسر دیواره‌ها باردار می‌باشد، شبیه‌سازی گردیده است و نتایج آن با نتایج تحلیلی موجود مقایسه شده است.نتایج عددی نشان می‌دهد که در حضور یک میدان مغناطیسی برای جریان در یک ریزمجرا، راندمان اختلاط نسبت به حالت عدم حضور میدان مغناطیسی افزایش چشم‌گیری می‌یابد، به طوری که راندمان اختلاط نهایی حداکثر به 3/93 درصد می‌رسد. البته این در حالی است که میدان مغناطیسی قبل از لایه دوگانه الکتریکی اعمال شده باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Analysis of Magnetic Mixing Phenomenon in an Electroosmotic Flow between Two Parallel Plates

نویسندگان [English]

  • Morteza Dallakehnejad 1
  • Seyed Ali Mirbozorgi 2
  • Hamid Niazmand 3
1 Ebnehesam College, Technical and Vocational University of South Khorasan, Birjand, Iran.
2 Department of Mechanical Engineering, University of Birjand, Birjand, Iran.
3 , Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

In the present paper, the mixing in electroosmotic flow is studied numerically and simulated in the presence of a magnetic field with three different locations. The flow geometry was included a two-dimensional duct between two parallel plates, and the flow was assumed to be incompressible, steady and laminar. The governing equations of the problem, including modified momentum equations (Navier-Stokes) for the fluid flow field, the equations of external and internal electric potential fields, the equations of distribution of the positive and negative ions (Nernst-Planck), the magnetic field equation, and the concentration equation for species have been solved using the finite volume numerical method. The obtained numerical results were validated against the analytical solutions of an EOF with uniform microchannel walls zeta potentials. The numerical results show that in the presence of a magnetic field, so the final mixing efficiency reaches to 93.3 %. However, this is while the magnetic field has been applied before the electric double layer.

کلیدواژه‌ها [English]

  • Micro-Mixer
  • Mixing Efficiency
  • Electric field
  • Numerical simulation
  • Navier-Stokes
1. Figeys, D. and Pinto, D., "Lab-on-a-chip: a revolution in biological and medical sciences", Journal of Analytical Chemistry, vol. 72, pp. 330 A-335 A, (2000).
2. Tüdős, A. J., Besselink, G. A. and Schasfoort, R. B., "Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry", Lab on a Chip, vol. 1, pp. 83-95, (2001).
3. Wang, Y., Zhe, J., Chung, B. T. and Dutta, P., "A rapid magnetic particle driven micromixer," Microfluidics and Nanofluidics, vol. 4, pp. 375-389, (2008).
4. Alizadeh, A., Zhang, L. and Wang, M., "Mixing enhancement of low-Reynolds electro-osmotic flows in microchannels with temperature-patterned walls", Journal of Colloid and Interface Science, vol. 431, pp. 50-63, (2014).
5. Gambhire, S., Patel, N., Gambhire, G. and Kale, S., "A Review on Different Micromixers and its Micromixing within Microchannel", International Journal of Current Engineering and Technology, vol. 4, pp. 409-413, (2016).
6. Hessel, V., Löwe, H. and Schönfeld, F., "Micromixers—a review on passive and active mixing principles", Chemical Engineering Science, vol. 60, pp. 2479-2501, (2005).
7. Capretto, L., Cheng, W., Hill, M. and Zhang, X., "Micromixing within microfluidic devices", Microfluidics, pp. 27-68, (2011).
8. Burgreen, D. and Nakache, F., "Electrokinetic flow in ultrafine capillary slits1", The Journal of Physical Chemistry, vol. 68, pp. 1084-1091, (1964).
9. Rice, C. and Whitehead, R., "Electrokinetic flow in a narrow cylindrical capillary", The Journal of Physical Chemistry, vol. 69, pp. 4017-4024, (1965).
10. Masliyah, J. H., "Electrokinetic transport phenomena", Chemical Engineering Education, vol. 28, pp. 254-256, (1994).
11. Yang, C., Li, D. and Masliyah, J. H., "Modeling forced liquid convection in rectangular microchannels with electrokinetic effects", International Journal of Heat and Mass Transfer, vol. 41, pp. 4229-4249, (1998).
12. Mirbozorgi, S. A., Niazmand, H. and Renksizbulut, M., "Electro-osmotic flow in reservoir-connected flat microchannels with non-uniform zeta potential", Journal of Fluids Engineering, vol. 128, pp. 1133-1143, (2006).
13. Rashidi, S., Bafekr, H., Valipour, M. S. and Esfahani, J. A., "A review on the application, simulation, and experiment of the electrokinetic mixers", Chemical Engineering and Processing-Process Intensification, vol. 126, pp. 108-122, (2018).
14. Alizadeh, A., Hsu, W. L., Wang, M. and Daiguji, H., "Electroosmotic flow: From microfluidics to nanofluidics", Electrophoresis, vol. 42, pp. 834-868, (2021).
15. Biddiss, E., Erickson, D. and Li, D., "Heterogeneous surface charge enhanced micromixing for electrokinetic flows", Analytical Chemistry, vol. 76, pp. 3208-3213, (2004).
16. Luo, W.-J., Yarn, K.-F. and Hsu, S.-P., "Analysis of electrokinetic mixing using AC electric field and patchwise surface heterogeneities", Japanese Journal of applied physics, vol. 46, p. 1608, (2007).
17. Jain, M. and Nandakumar, K., "Optimal patterning of heterogeneous surface charge for improved electrokinetic micromixing", Computers & Chemical Engineering, vol. 49, pp. 18-24,( 2013).
18. Jamaati, J., Niazmand, H. and Renlsizbulut, M., "Investigation of electrokinetic mixing in 3D non-homogenous microchannels", Journal Of Computational And Applied Research In Mechanical Engineering, vol. 3, pp. 41-52, (2013).
19. Nayak, A., "Analysis of mixing for electroosmotic flow in micro/nano channels with heterogeneous surface potential", International Journal of Heat and Mass Transfer, vol. 75, pp. 135-144, (2014).
20. افسری، م. م.، میربزرگی، س. ع. و نیازمند، ح.، "مطالعه راندمان اختلاط یک ریزمخلوط‌گر الکترواسمتیکی با توزیع ناهمگن بارهای دیواره"، مجله علوم کاربردی و محاسباتی در مکانیک، دوره 25، شماره 2، صفحه 97-109، (1393).
21. بساطی، ی.، محمدی پور، ا. ر. و نیازمند، ح.، "بررسی و بهینه سازی اثر هندسه و بارگذاری سطح بر راندمان اختلاط الکترواسموتیک در میکروکانال‌های همگرا-واگرا به روش سطح پاسخ"، مهندسی مکانیک مدرس، دوره 18، شماره 1، صفحه 27-39، (1397).
 22. Basati, Y., Mohammadipour, O. R. and H. Niazmand, "Numerical investigation and simultaneous optimization of geometry and zeta-potential in electroosmotic mixing flows", International Journal of Heat and Mass Transfer, vol. 133, pp. 786-799, (2019).
.23دلاکه نژاد، م.، میربزرگی، س. ع. و نیازمند ح.، "راندمان اختلاط در جریان الکترواسموتیک با زتا پتانسیل غیریکنواخت دیواره"، مجله مهندسی مکانیک مدرس، دوره 18، شماره 6، صفحه 30-40، (1397).
 24. Dallakehnejad, M., Mirbozorgi, S. A. and Niazmand, H., "A numerical investigation of magnetic mixing in electroosmotic flows", Journal of Electrostatics, vol. 100, p. 103354, (2019).
25. Rhie, C. and Chow, W. L., "Numerical study of the turbulent flow past an airfoil with trailing edge separation", AIAA Journal, vol. 21, pp. 1525-1532,( 1983).
26. Chen, J.-L., Shih, W.-H. and Hsieh, W.-H., "AC electro-osmotic micromixer using a face-to-face, asymmetric pair of planar electrodes", Sensors and Actuators B: Chemical, vol. 188, pp. 11-21, (2013).
27. Ebrahimi, S., Hasanzadeh-Barforoushi, A., Nejat, A. and Kowsary, F., "Numerical study of mixing and heat transfer in mixed electroosmotic/pressure driven flow through T-shaped microchannels", International Journal of Heat and Mass Transfer, vol. 75, pp. 565-580, (2014).