بررسی اثر عمق شیارV شکل بر چقرمگی شکست KIC و ناحیه پلاستیک نوک ترک با استفاده از داده‌های آزمایش ضربه شارپی در فولاد API X65

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی مکانیک، دانشگاه فردوسی مشهد.

2 دانشگاه صنعتی بیرجند

چکیده

در این مقاله به بررسی اثر عمق شیار بر چقرمگی شکست (KIC) و ناحیه پلاستیک نوک ترک با استفاده از داده‌های آزمایش ضربه شارپی (CVN) استخراج‌شده از لوله‌های انتقال نفت و گاز فولادی از جنس API X65 با عمق شیارهای متفاوت انجام و انرژی شکست اندازه‏گیری شد. هم‎چنین شبیه‏سازی کامپیوتری آزمایش ضربه با مدل سه‎بعدی بر اساس قانون آسیب اصلاح‌شده گرسون در نرم‎افزار آباکوس انجام شد. برای به دست آوردن مقادیر KIC ، معادلات بر اساس تنش تسلیم و انرژی شکست‌های آزمایش ضربه شارپی (CVN) به‌دست‌آمده از فولاد موردنظر استفاده شد. داده‌های KIC و ناحیه پلاستیک نوک ترک برآورد شده با افزایش عمق شیار نمونه ضربه شارپی کاهش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of V-notch Depth on Fracture Toughness and the Plastic Region of the Crack Tip Using Charpy Impact Test Data in API X65 Steel

نویسندگان [English]

  • Ali Hosseinzadeh 1
  • Khlil Farhangdoost 1
  • Mohammadreza Maraki 2
1 Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Department of Material Engineering, Birjand University of Technology, Birjand,
چکیده [English]

In this paper, the effect of notch depth on the fracture toughness (KIC) and the plastic region of the crack tip material using the Charpy V-Notch test (CVN) data extracted from API X65 with different notch depth were conducted and the fracture energy was measured. Also, computer simulation of the experiment with a three-dimensional model was performed based on Gurson's modified damage law in Abaqus software. To obtain KIC values, equations based on the yield stress (σYS) and the failure energy of the Charpy V-Notch test (CVN) obtained from the steel was used. The estimated KIC data and plastic region of the crack tip, decreased with increasing notch depth.

کلیدواژه‌ها [English]

  • fracture toughness
  • Crack tip plastic region
  • charpy impact test
  • notch depth effect
  • API X65 steel
1. حسین زاده، علی، (1397) بررسی تجربی و عددی اثر عمق شیار بر انرژی شکست شارپی در فولاد ایکس شصت‌وپنج، پایان‌نامه کارشناسی ارشد مکانیک، گروه مکانیک دانشگاه بیرجند.
2. مجذوبی، غلامحسین، علوی نیا، علی (1390) مقاومت مصالح 3، انتشارات دانشگاه بوعلی سینا.
3. Velazquez JL. (2004) Mecanica de fractura. Mexico: Limusa.
4. Matusevich AE, Mancini RA, Giudici AJ. (2012) Determinacion de la tenacidad a la fractura del material de un gasoducto. Rev Lantin Am Metal Mater ;32 60-253:(2).
5. McNicol RC. (1965) Correlations of Charpy test results for standard and nonstandard size specimens. WRC; 5. p. 385.
6. Phaal R, Macdonald KA, Brown PA. (1994) Correlations between fracture and Charpy impact energy, report from the cooperative research programmed for industrial members only, TWI report 504/1994. Cambridge, U.K.: The Welding Institute.
7. Barsom JM, Rolfe ST. (1999) Fracture and fatigue control in structures. 3rd ed. Englewood Cliffs, New Jersey: Prentice Hall.
8. Rolfe ST, Novak SR. (1970) Slow-bend KIC testing of medium high-toughness steel. Review of development in plane strain fracture toughness testing, ASTM STP 463, ASTM; p. 124–59.
9. Barsom JM, Rolfe ST. (1970) Correlations between KIC and Charpy V-notch test results in the transition-temperature range. Impact Testing of Metals, ASTM STP 466, ASTM;. p. 281–302.
10. Roberts R, Newton C. (1981) Interpretive report on small scale test correlations with KIC data, WRC Bulletin, Welding Research Council, New York N.Y.;February,. p. 265.
11. Sailors RH, Corten HT. (1972) Relations between material fracture toughness using fractures mechanics and transition temperature test. In: Fracture toughness, proceeding of the 1972, National Symposium on Fracture Mechanics – Part II, STP 514, ASTM; p. 164–91.
12. Wullaert RA. (1978) Fracture toughness predictions from Charpy V-notch data, what does the Charpy test really tell us? In: Proceeding of the American Institute of Mining, Metallurgical and Petroleum Engineers, American Society for Metals.
13. Roberts R, Newton C. (1984) Report on small-scale test correlations with KIC data. Weld Res Council Bull;299.
14. Barsom JM. (1975) The development of AASHTO fracture toughness for bridge steel. Engng Fract Mech;7(3):605–18.
15. Marandet B, Sanz G. (1977) Evaluation of the toughness of the medium-strength by using elastic fracture mechanics and correlations between KIC and Charpy V-notch, Flaw Growth and Fracture, STP 631, ASTM;. p. 72–95.
16. Norris DM, Reaugh JE, Server WL. (1981) A fracture-toughness correlations based on Charpy initiation energy. In: Fracture Mechanics: Thirteenth Conference, STP 473, ASTM; p. 207–17.
17. Walling K (1994). New report methodology for selecting Charpy toughness criteria for thin high strength steels. Report Represented to Commission X, IIW, Annual assembly, Beijing, IIW DOC. NO. X.1290-94.
18. Morales FR, Scott AD, Napoles NP. (2005) Determinacion de la tenacidad a la fractura de muestras de acero 45 fundido, empleando las correlaciones entre el KIC y la energia de impacto medida en el ensaye de Charpy. Ingenieria Mecanica;2:29–33.
19. سالاری پور، حمید (1390) تحلیل نتایج تجربی تست ضربه سقوطی فولاد API X70، پایان‌نامه کارشناسی ارشد مکانیک، گروه مکانیک دانشگاه بیرجند.
20. B. Verlinden, (2007) "Thermo-Mechanical Processing of Metallic Materials", First Edition, Elsevier Ltd.
21. هاشمی، سیدحجت، کیمیابخش، مسعود و رضایی یکتا، مرتضی (1390) تعیین تجربی و عددی چقرمگی شکست با استفاده از اطلاعات آزمایش ضربه شارپی در فولاد لوله‌های انتقال گاز با گرید API X65، نوزدهمین همایش سالانه مهندسی مکانیک ایران، بیرجند، دانشگاه بیرجند.
22. ASTM E23, standard Test Methods for Notched Bar Impact Testing of Metallic Materials (Approved Nov. 10. 2002, Published May 2003).
23. Rolfe ST, Novak ST. (1970) Impact testin of metals, ASTM STP 463. American Society for Testing and Materials; p. 124-159.
24. Barsom JM, Rolfe ST. (1970) Impact testing of metals, ASTM STP 466. American Society for Testing and Materials; p. 281-302
25. Ault RT, Wald GM, Bertola, RB. (1971) Development of an improved ultrahigh strength steel for forged aircraft components. AFML TR 71271, Airforce Materials Lab, Wright-Patterson Airforce Base, Ohio, USA.
26. Van der Sluys WA, Seely RR, Schwabe JE. (1983) Determining fracture properties of reactor vessel forging materials. EPRI NP 922, Electric power research institute, Palo Alto, California, USA, p. 5-22
27. Witt FJ. (1983) Relationships between Charpy impact shelf energies and upper shelf KIC values for reactor pressure vessel steels. International Journal of Pressure Vessels and Piping; 11:47-63.
28. Kussmaul K, Roos E. (1984) Statistical evaluation of post-yield fracture mechanics properties on the basis of the notched bar impact test. Safety and Reliability of Pressure Components with Special Emphasis on Fracture Exclusion: 10th MPA seminar, Staatliche Materialprufungsanstalt Universitat, Stuttgart, Vol.1, paper 12.
29. Asghari, Vahid, Choupani, Naghdali, Hanifi, Mahdi (2017) CVN–KJC correlation model for API X65 gas pipeline, Engineering Failure Analysis, doi: 10.1016/j.engfailanal.2017.04.007.
30. هاشمی، سیدحجت، کیمیابخش، مسعود (1392) بررسی تجربی و عددی چقرمگی شکست فولاد لوله های انتقال گاز با گروه API X65، نشریه علمی پژوهشی امیرکبیر، دوره 45، شماره2.
31. Beak, J. H. Kim, Y. P. Kim, C. M. Kim, W. S. Seok, C. S. (2010) Effect of Pre-Strain on the Mechanical Properties of API X65 Pipe, Material and Science A, 527, pp.1473-1479.
32. BS EN ISO 12737 (1999) Metallic Materials Determination of Plan-Strain Fracture Toughness, British Standard Institution.
33. Perez, Nestor (2004), Fracture Mechanics, Department of Mechanical Engineering University of Puerto Rico.
34. J. Capelle, J. Furtado, Z. Azari, S. Jallais, G. Pluvinage (2013) Design based on ductile–brittle transition temperature for API 5L X65 steel used for dense CO2 transport, Engineering Fracture Mechanics, Volume 110, Pages 270-280, ISSN 0013-7944.