ارزیابی معیارهای رشد ترک در پلیمر مدرج تابعی به‌روش اجزای محدود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه اصفهان

2 صنعتی اصفهان

3 اصفهان

چکیده

در این پژوهش، ابتدا معیارهای مختلفی مانند معیار بیشینه تنش مماسی، بیشینه نرخ رهایش انرژی و کمینه چگالی انرژی کرنشی مورد ارزیابی قرار می‌گیرند. سپس با به‌کارگیری روش انتگرال تعاملی (انتگرال M) در یک پلیمر مدرج تابعی، ضرایب شدت تنش برای حالت-های مختلف جهت‌گیری ترک و خواص مکانیکی ماده محاسبه می‌گردد. بااستفاده از نتایج حاصل، زاویۀ آغاز ترک از معیارهای مختلف به‌دست آمده و با نتایج تجربی موجود در مقالات مقایسه می‌شود. نتایج آشکار می‌کند که پیش‌بینی‌های معیارهای بیشینه تنش مماسی و کمینه چگالی انرژی کرنشی به‌هم نزدیک است ولی معیار کمینه چگالی انرژی کرنشی از دقت بهتری برخوردار است. در آخر، مسیر رشد ترک محاسبه ‌شده با نتایج تجربی موجود در پژوهش‌ها مقایسه می‌گردد و دقت معیار کمینه چگالی انرژی کرنشی، نشان داده می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Crack Growth Criteria in Functionally Graded Polymer using Finite Element Metho

نویسندگان [English]

  • Mehdi Najimi 1
  • farhad haji aboutalebi 2
  • Hamid Beheshti 3
1 University of Isfahan
2 Isfahan University of Technology
3 Wichita State University, USA
چکیده [English]

In this research first, different fracture criteria such as maximum tangential stress, maximum strain energy release rate, and minimum strain energy density are evaluated. Then, employing the interaction integral (M-integral) method in a functionally graded polymer, stress intensity factors for different directions of the crack orientation and mechanical properties are calculated. Applying the achieved results, the initiation angle of the crack is obtained by the various fracture criteria and compared with the experimental results existed in the papers. The results reveal that the predicted results of the maximum tangential stress and the minimum strain energy density criteria are close to each other but, the minimum strain energy density criterion has better accuracy. Finally, the calculated crack growth path is compared with the experimental results existed in the researches and the accuracy of the minimum strain energy density criterion is shown..

کلیدواژه‌ها [English]

  • Crack Growth Criteria
  • Functionally Graded Polymer
  • Interaction Integral Method
  • Finite Element Method
1. Hirai, T., "Functionally gradient materials and nanocomposites", Proceedings of the Second International Symposium on Functionally Gradient Materials, San Francisco, CA, November 1-4, Vol. 34 of Ceramic Transactions, pp. 11-20, (1993).
2. Jin, Z.H. and Noda, N., "Crack tip singular fields in nonhomogeneous materials", Journal of Applied Mechanics, Transactions ASME 61, pp. 738-740, (1994).
3. Erdogan, F. and Wu, B.H., "The surface crack problem for a plate with functionally graded properties", Journal of Applied Mechanics, Vol. 64, pp. 449–456, (1997).
4. Huang, G.Y., Wang, Y.S. and Yu, S.W., "Fracture analysis of a functionally graded interfacial zone under plane deformation", International Journal of Solids and Structures, Vol. 41, pp. 731–743, (2004).
5. Dag, S., "Thermal fracture analysis of orthotropic functionally graded materials using an equivalent domain integral approach", Engineering Fracture Mechanics, Vol. 73, pp. 2802–2828, (2006).
6. Dag, S., "Mixed-mode fracture analysis of functionally graded materials under thermal stresses: a new approach using Jk-integral", Journal of Thermal Stresses, Vol. 30, pp. 269–296, (2007).
7. Nazari, A., Mohandesi, J.A. and Riahi, R., "Fracture toughness of functionally graded steels", Journal of Materials Engineering and Performance, Vol. 21, pp. 558–563, (2012).
8. Torshizian, M.R. and Kargarnovin, M.H., "The mixed-mode fracture mechanics analysis of an embedded arbitrary oriented crack in a two-dimensional functionally graded material plate", International Journal of Fracture, Vol. 84, pp. 625–637, (2014).
9. Kim, J.H. and Paulino, G.H., "The interaction integral for fracture of orthotropic functionally graded materials: Evaluation of stress intensity factors", International Journal of Solids and Structures, Vol. 40, No. 15, pp. 3967–4001, (2003).
10. Hirano, T., Teraki, J. and Yamada, T., "On the design of functionally gradient materials", Proceedings of the First International Symposium on Functionally Gradient Materials, pp. 5-10, (1990).
11. Kawasaki, A. and Watanabe, R., "Thermal fracture behavior of metal/ceramic functionally graded biomaterial", Engineering Fracture Mechanics, Vol. 69, pp. 1713–1728, (2002).
12. Erdogan, F. and Sih, G.C., "On the crack extension in plates under plane loading and transverse shear", ASME Journal of Basic Engineering, Vol. 85, pp. 519–527, (1963).
13. Hussain, M.A., Pu, S.L. and Underwood, J., "Strain energy release rate for a crack under combined mode I and mode II", Fracture Analysis, ASTM STP 560, pp. 2–28, (1993).
14. Sih, G.C., "Strain energy density factor applied to mixed mode crack problems", International Journal of Fracture, Vol. 10, No. 3, pp. 305–321, (1974).
15. Kim, J.H. and Paulino, G.H., "Consistent formulations of the interaction integral method for fracture of functionally graded materials", Journal of Applied Mechanics, Transactions ASME 72, No. 3,
pp. 351–364, (2005).
16. Kim, J.H. and Paulino, G.H., "An accurate scheme for mixed-mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models", International Journal for Numerical Methods in Engineering, Vol. 58, No. 10, pp. 1457–1497, (2003).
17. Rice, J.R., "A path-independent integral and the approximate analysis of strain concentration by notches and cracks", Journal of Applied Mechanics, Transactions ASME 35, No. 2, pp. 379–386, (1968).
18. Eftis, J., Subramonian, N. and Liebowitz, H., "Crack border stress and displacement equations revisited", Engineering Fracture Mechanics, Vol. 9, No. 1, pp. 189–210, (1977).
19. Yau, J.F., Wang, S.S. and Corten, H.T., "A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity", Journal of Applied Mechanics, Transactions ASME 47, No. 2, pp. 335–341, (1980).
20. Abanto-Bueno, J. and Lambros, J., "An Experimental Study of Mixed Mode Crack Initiation and Growth in Functionally Graded Materials", Experimental Mechanics, Vol. 46, pp. 179-196, (2006).
21. Oral, A., Lambros, J. and Anlas, G., "Crack initiation in functionally graded materials under mixed mode loading, experiments and simulations", Journal of Applied Mechanics, Transactions ASME 75, No. 5, pp. 1-8, (2008).
22. Ayatollahi, M.R., Pavier, M.J. and Smith, D.J., "Mode I cracks subjected to large T-stresses", International Journal of Fracture, Vol. 117, pp. 159–174, (2002).
23. Becker, T.L., Cannon, R.M. and Ritchie, R.O., "Finite crack kinking and T-stresses in functionally graded materials", International Journal of Solid and Structures, Vol. 38, pp. 5545-5563, (2001).
24. Sedighiani, K., Mosayebnejad, J., Ehsasi, H. and Sahraei, H.R., "The effect of T-Stress on the brittle fracture under mixed mode loading", Procedia Engineering 10, pp. 774-779, (2011).
CAPTCHA Image