شبیه‌سازی جریان تراکم‌پذیر گذر صوتی ناپایدار تناوبی با استفاده از الگوریتم فوریه مبنا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 دانشگاه بیرجند

چکیده

تحقیق حاضر جریان گذر صوتی ناپایدار حول ایرفویل‌های نوسانی را از طریق حل معادلات اویلر و ناویر استوکس و با استفاده از روش طیفی زمانی شبیه‌سازی کرده است و نتایج حاصل را با روش‌های قدیمی برای حل مسائل ناپایا نظیر فرمولاسیون تفاضلی پسرو و روش صریح شبکه‌ی سازمان یافته‌ی تطبیق‌پذیر، مقایسه می‌کند. روش طیفی زمانی از یک تبدیل فوریه گسسته در زمان استفاده می‌کند و از این رو، حل مستقیماً در یک حالت تناوبی منطبق بر فیزیک جریان، پیش می‌رود. ابزار ریاضی استفاده‌شده در این‌جا تبدیلات مستقیم و معکوس فوریه می‌باشند. صحت الگوریتم حاضر از طریق پیاده سازی بر چند نمونه تست آیرودینامیکی دو بعدی تأیید شده است. این نمونه تست ها ایرفویل‌های نوسانی نوع NACA 64A010 (مدل CT6) و نوع NACA 0012 (مدل CT1 و CT5) می‌باشند. به دلیل طبیعت آشفته‌ی جریان لزج در این نمونه تست‌ها، مدل آشفته Baldwin-Lomax برای آنالیز جریان لزج با دامنه‌ی نوسان بالا (مدل CT5) مورد استفاده قرار گرفته است. نتایج حاصل از روش طیفی زمانی با نتایج آزمایشگاهی و دو روش ذکر شده، مقایسه شده است. نتایج ارائه شده توسط این روش، در عین حفظ دقت، کاهش چشمگیری را در هزینه‌ی محاسبات نسبت به دو روش دیگر نشان می‌دهد، چرا که جریان از طریق تبدیلات فوریه مستقیماً به‌صورت تناوبی حل شده و از دقت طیفی برخوردار است. نتایج نشان می‌دهد که برای تسخیر فیزیک جریان، به تعداد فواصل زمانی اندکی (تنها چهار فاصله‌ی زمانی) در یک پریود نوسان ایرفویل در هر دو حالت دامنه‌ی نوسان پایین (مدل CT6) و دامنه‌ی نوسان بالا (مدل CT5)، در مقایسه با دیگر روش‌ها نیاز است.

کلیدواژه‌ها


عنوان مقاله [English]

Periodic Unsteady Transonic Compressible Flow Simulation using Fourier-Based Algorithm

نویسندگان [English]

  • M.R. Mohaghegh 1
  • M. Malek Jafarian 2
چکیده [English]

The present research simulates time-periodic unsteady transonic flow around pitching airfoils via the solution of unsteady Euler and Navier-Stokes equations, using Time Spectral Method (TSM) and compares it with the traditional methods such as BDF and Explicit Structured Adaptive Grid Method. The TSM uses a Fourier representation in time and hence solves for the periodic state directly according to physics of flow. Mathematical tools used here are discrete Fourier transformations. The TSM has been validated with 2D external aerodynamics test cases. These test cases are NACA 64A010 (CT6) and NACA 0012 (CT1 and CT5) pitching airfoils. Because of turbulence nature of flow, Baldwin-Lomax turbulence model has been used in viscous flow analysis with large oscillation amplitude (CT5 type). The results presented by the TSM are compared with experimental data and the two other methods. By enforcing periodicity and using Fourier representation in time that has a spectral accuracy, tremendous reduction of computational cost has been obtained compared to the conventional time-accurate methods. Results verify the small number of time intervals per pitching cycle (just four time intervals) required to capture the flow physics with small oscillation amplitude (CT6) and large oscillation amplitude (CT5) as compared to two other methods.

کلیدواژه‌ها [English]

  • Time Spectral Method
  • Unsteady transonic flow
  • Pitching airfoil
  • Discrete Fourier transform
  • Baldwin-Lomax turbulence model
1. McCroskey, W. J., "Inviscid Flow Field of an Unsteady Airfoil", AIAA Journal, Vol. 11, pp. 1130-1137, (1973).
2. McCroskey, W. J., "Unsteady Airfoils", Annual Review of Fluid Mechanics, Palo Alto, CA, Vol. 14, pp. 285-311, (1982).
3. Rausch, Russ D., Yang, Henry T. Y., and Batina, John T., "Euler Flutter Analysis of Airfoils Using Unstructured Dynamic Meshes", Journal of Aircraft, Vol. 27, No. 5, pp. 436-443, (1990).
4. Anderson, J. M., Streitlien, K., Barrett, D. S. and Triantafyllou, M. S., "Oscillating Foils of High Propulsive Efficiency", Journal of Fluid Mechanics, Vol. 360, pp. 41–72, (April 1998)
5. Mittal, S., "Finite element computation of unsteady viscous compressible flows", Computer Methods in Applied Mechanics and Engineering, Vol. 157, Issues 1–2, Pages 151–175, (April 1998).
6. Yang, Z., Sankar, L. N., Smith, M. and Bauchau, O., "Recent Improvements to a Hybrid Method for Rotors in Forward Flight", Presented as Paper 2000–0260 at the AIAA 38th Aerospace Sciences Meeting & Exhibit, Reno, NV, (January 2000), Journal of Aircraft, Vol. 39, No. 5, pp. 804-812, (2002).
7. Zhao, Q. J., Xu, G. H. and G., Zhao J., "New Hybrid Method for Predicting the Flowfields of Helicopter Rotors. Journal of Aircraft", Vol. 43, No. 2, pp. 372–380, (2006).
8. Yang, S., Zhang, Z., Liu, F., Luo, S., Tsai, H. M. and Schuster, D., "Time-Domain Aeroelastic Simulation by a coupled Euler and Integral Boundary-Layer Method", 22nd Applied Aerodynamics Conference and Exhibit, Rhode, Island, (2004).
9. Pasandideh Fard, M. Heidary, A. and Malekjafarian, M., "Numerical Analysis of Unsteady Flow around a Oscillator Airfoil with Moving Structured Adaptive Grid by Using Central and Upwind Schemes", International Aerospace Conference, Ankara, (August 17-19, 2009 ).
10. Hall, K. C., Thomas, J. P. and Clark, W. S., "Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique", 9th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines (ISUAAAT), Lyon, France, (September 2000), AIAA Journal, Vol. 40, No. 5, pp. 879-886 (2002).
11. McMullen, M., Jameson, A. and Alonso, J. J., "Application of a Nonlinear Frequency Domain Solver to the Euler and Navier- Stokes Equations", AIAA paper 02-0120, AIAA 40th Aerospace Sciences Meeting and Exhibit, Reno, NV, (January 2002).
12. McMullen, M. and Jameson, A., "The Computational Efficiency of Non-linear Frequency Domain Methods", Journal of Computational Physics, Vol. 212, pp. 637-661, (2006).
13. McMullen, M., Jameson, A. and Alonso, J. J., "Demonstration of Nonlinear Frequency Domain Methods", AIAA Journal, Vol. 44, No. 7, pp. 1428-1435, (2006).
14. Gopinath, A.K. and Jameson, A., "Time Spectral Method for Periodic Unsteady Computations over Two- and Three- Dimensional Bodies", AIAA Paper 2005–1220, AIAA 43th Aerospace Sciences Meeting & Exhibit, Reno, NV, pp. 10683-10696, (2005).
15. Butsuntorn, N. and Jameson, A., "Time Spectral Method for Rotorcraft Flow", 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV,, AIAA Paper 2008-0403, (2008).
16. Butsuntorn, N. and Jameson, A., "Time Spectral Method for Rotorcraft Flow with Vorticity Confinement", 26th AIAA Applied Aerodynamics Conference, Honolulu, HI, (August 18-21, 2008).
17. Sicot, F. Puigt, G. and Montagnac, M., "Block-Jacobi Implicit Algorithms for the Time Spectral Method", AIAA Journal, Vol.46 No.12, pp 3080-3089 (2008).
18. Su, X. and Yuan, X., "Implicit Solution of Time Spectral Method for Periodic Unsteady Flows", International Journal for Numerical Methods in Fluids, pp. 860-876 (2009).
19. Yang, Z. and Mavriplis, D., "Time Spectral Method for Periodic and Quasi-Periodic Unsteady Computations on Unstructured Meshes", 40th AIAA Fluid Dynamics Conference, Illinois, (June. 28-1, 2010).
20. Yang, Z. Mavriplis, D. and Sitaraman, J., "Prediction of Helicopter Maneuver Loads Using BDF/Time Spectral Method on Unstructured Meshes", 49th AIAA Aerospace Sciences Meeting, Florida, (Jan. 4-7, 2011).
21. Antheaume, S. and Corre, C., "Implicit Time Spectral Method For Periodic Incompressible Flows", AIAA Journal, Vol. 49, Issue 4, pp. 791-805, (2011).
22. Baldwin, B. S. and Lomax, H., "Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows", AIAA Paper 78 257, (1978).
23. Davis, S.S., "NACA 64A010 (NASA Ames Model) Oscillatory Pitching", AGARD Report 702, AGARD, Dataset 2, (January 1982).
24. Landon, R.H., "NACA 0012 Oscillatory and Transient Pitching", AGARD Report 702, AGARD, Dataset 3. (January 1982).
25. Jameson, A. Schmidt, W. and Turkel, E., "Numerical solutions of the Euler equations by finite volume methods with Runge-Kutta time stepping schemes", AIAA paper 81-1259, (January 1981).
26. Moin, P., "Spectral Methods in Computational Physics", Supplementary notes, Stanford University, Stanford, CA, ME 408, (2003).
27. Jameson, A., "Numerical Methods in Fluid Dynamics", Lecture Notes in Mathematics, vol. 1127/1985, chap. Transonic Flow Calculations, pp. 156–242. Springer Berlin/Heidelberg, Princeton University MAE Report 1651, (March 1984).
CAPTCHA Image