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1- Introduction 
Bending plate structures are important in mechanical 
and civil engineering. Therefore, a great deal of research 
has been done to describe their behavior. Moreover, 
closed-form and numerical solutions are proposed for 
these structures. 

The analysis of elastic plates with large deformations 
is very complicated and there are a few approaches for 
finding an exact solution. Numerical and approximate 
solution procedures have been developed for large 
displacements with the increasing processing power of 
modern computers. One of these tactics is called 
dynamic relaxation (DR). This method employes the 
Second-Order Richardson approach. This scheme was 
developed by Frankel. The static equilibrium equations 
are converted to a fictitious dynamic system in this way. 

In this study, geometrically nonlinear bending analysis 
of plates is performed using DR and finite difference 
methods. At the first stage, the damping factor is 
obtained so that the convergence is achieved. It should 
be added that in the common DR formulation, the 
damping is constant in the DR iterations. Here, the 
variable damping is used. In this kind of damping, the 
constant mass and the variable mass are applied. The 
constant mass does not change during analysis, while the 
variable mass is updated at each iteration. In many 
problems, researchers applied the velocity criterion for 
the convergence of the plates' analysis by utilizing the 
DR and finite difference. Based on the velocity criterion, 
the structure will reach a static equilibrium if the 
velocity is less than the allowable error in the DR 
iterations. In this paper, three criteria are used to stop the 
analysis; the velocity, the kinetic energy and the 
displacement ratio of the two successive iterative steps. 
Afterwards, a comparison study is performed between 
them. 

 
2- The dynamic relaxation method 
Dynamic relaxation is one of the explicit methods to 
solve a system of simultaneous equations. In this 
process, a fictitious mass and a fictitious damping are 
added to static structural equations to obtain the 
following fictitious dynamic system: 
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The terms M and C are the fictitious mass matrix and 
the damping matrix, respectively. Both are diagonal. 
The displacement, velocity and acceleration are 
demonstrated by X, Ẋ, and Ẍ, correspondingly. 
Moreover, the number of iterations is denoted by n. The 
stiffness matrix; external internal load vectors are shown 
by S, P and f, respectively. To solve Eq. (1), the inertia 
and damping forces should become zero. 

In the DR approach, the velocity variations are 
assumed to be linear and the acceleration is supposed to 
be constant for each time step t. Thus, the following 
equalities can be obtained for the iterative relations of 
this tactic by using central finite differences: 
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3- DR and bending plates 
In this section, the DR finite difference formulas are 
obtained for geometric nonlinear bending plates. For this 
purpose, equilibrium differential equations, the strain-
displacement relation, the curvature-displacement 
relation and internal forces' formula are applied. It 
should be emphasized that the middle surface has a 
strain in the large-deflection theory in contrast to the 
small-deflection theory. Eq. (4) shows the velocity for 
each degree of freedom. 
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Here, the equilibrium differential equation at α 

direction is shown by iEQ . The symbol α can be u, v and 

w, which are displacements in X, Y and Z directions, 
respectively. The in-plane displacements are denoted by 
u and v. Moreover, the lateral displacement (deflection) 

is w. Furthermore, 



 m

tcC
a

2
*  , in which the term c is 

damping factor. 
 

4- The DR Stability 
Stability of dynamic relaxation iterations depends on the 
estimation of appropriate mass and damping matrices. In 
this research, the absolute values of the stiffness matrix 
entries in a row are calculated and summed to find the 
nodal mass in each iteration. This summation is 
established by two parts. One of them is constant during 
the analysis, whereas the other one should be calculated 
in each iteration. The in-plane forces' sign plays an 
important role in the numerical stability of sum of 
entries in the out-of-plane equilibrium differential 
equation. In other words, the stiffness is decreased if the 
in-plane force's sign is minus. 
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5- Boundary conditions 
To satisfy equilibrium equations in each grid node, 
boundary conditions should be considered. In other 
words, compatibility relations should be satisfied in 
addition to the equilibrium equations for structural 
analysis. Compatibility relations are obtained from 
boundary conditions. These equations can be written 
according to displacements or forces. In general, 
compatibility relations consist of two parts. One of them 
is displacement's boundary conditions, while the other 
one is the force's compatibility relations. 

If displacements of nodes are specified, their 
equilibrium equations are ignored in the system. In other 
words, DR relations are not written in these nodes. For 
example, equilibrium equations are not written in simple 
and clamp supports. The support displacements are 
considered by this method. 

If load's value is specified in the boundaries, their 
effect should be considered in the equilibrium equations. 
These loads are called forces compatibility. In the finite 
difference procedure, the solution process is performed 
in two steps, which are the overall and exact approach to 
satisfy boundary conditions. At the first stage, problem 
is solved without force compatibility conditions. Force 
compatibility conditions are applied at the second step. 

There are two methods for establishing force 
compatibility conditions. At the first technique, the 
specified boundary forces are directly applied to 
equilibrium equations of adjacent nodes. Another 
method is alteration force conditions with equivalent 
displacement relations. 

 
6- The F factor 
In this section, various bending plates are analyzed. The 
F factor is changed from 0.1 to 3. The variable damping 
is used for all samples. Note that the constant damping 
does not cause any change in the results. The 
convergence criterion is the velocity error, and the DR 
iterations are stopped when the velocity is less than 10-5 
in X, Y and Z directions.  

Numerical samples show that the following value can 
be used to estimate the F factor based on the plate 
deflection in the large-displacement theory. If the ratio 
of deflection to the thickness is less than 1.5, F=2-3. For 
the ratio between 1.5 to 2, F=1.5-2 and for the ratio 
greater than 2, F=0.5-1. 

 
7- The constant and variable damping 
Here, the constant and variable damping are compared. 
Previous samples are used. The convergence criteria 
utilized in this study are the velocity error, kinetic 
energy error and the displacement ratio of the two 
successive iterative steps. For the velocity error, DR 
iterations are stopped when the velocity is less than 10-5 
in X, Y and Z directions. Based on the previous section, 
the F factor is set 0.75. In this paper, the numbers of 
total iterations and total analysis duration are compared. 

Numerical results show that the variable damping 
decreases the number of iterations and analysis time 

based on the velocity convergence criterion. The 
samples utilized in this study were ordinary plates in 
which the analysis duration is reduced 10% by using 
both the variable damping and the velocity criterion. If 
the plate’s geometry is complex, this 10% reduction is 
very beneficial and significant.  

 
8- Conclusion 
The finite difference approach doesn’t require the 
employment of stiffness matrix, element force vectors as 
well as assembling process. These are the advantages of 
finite difference procedure to other methods. Therefore, 
the number of iterations and the duration of analysis 
decrease. Moreover, computers with low processing 
power can be used. The finite difference scheme with 
the DR process is used to analyze geometric nonlinear 
bending plates. The fictitious mass is calculated by 
Cassell and Hobbs’s method. Both constant and variable 
damping is assumed in this study. The damping is 
estimated by   1

,,

 Fmc
iiii  . A value was determined for 

F so that the convergence criteria is satisfied. It is worth 
emphasizing that the convergence rate is dependent on 
the load value and mesh, in addition to F. Results show 
that the convergence is satisfied for any load with fine 
mesh and F=0.75. In small-displacement theory, F factor 
can be chosen very greater than 0.75 so that the 
convergence rate increases. 

Furthermore, samples were analyzed with the constant 
and variable damping by F=0.75. Three criteria for 
convergence of the variable damping method were 
utilized by the authors. These are the velocity error, 
kinetic energy error and the displacement ratio of the 
two successive iterative steps. The velocity criterion was 
applied for the constant damping. The loads were 
applied into forty increments. The previous increment 
results were used to increase the convergence rate. The 
allowable error was obtained by a trial-and-error  
process for the kinetic energy criterion and the 
displacement ratio of two successive iterative steps so 
that the deflection at the maximum load equals to the 
deflection based on the velocity criterion. Numerical 
results show that the proposed algorithm reduced the 
number of iterations and the analysis duration. The 
minimum decrease was 10%. Hence, it is recommended 
that both the variable damping and the velocity criterion 
be applied in the DR procedure with the finite difference 
scheme. Moreover, it was concluded that the 
displacement criterion had the minimal effect, and the 
answers were the worst ones. 


