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1. Introduction 
Particle flows have wide applications in various 
industries and sciences such as chemistry, biology, 
geology, environmental sciences and so on. Although 
numerous studies have been carried out in the field of 
particle flow, a few research studies have considered 
non-Newtonian behaviors. It is worth noting that most of 
the work done on particle motion phenomena in both 
Newtonian and non-Newtonian fields are in the circular 
geometry. In real applications, non-circular geometries 
have also contributed to the field and it is necessary to 
investigate the motion of particles with different 
geometries, such as square particles. 
 
2. Numerical Method 
The lattice Boltzmann method is used to simulate non-
Newtonian fluid flow and the immersed boundary 
method is utilized to model the motion of particle in 
fluid flow. Generally, the immersed boundary method 
can be defined as a non-body-conformal grid method 
that satisfies the no-slip boundary condition by 
implementing a force density term to the flow governing 
equation. In order to study the effects of immersed body, 
the direct-forcing algorithm is applied. Since the forcing 
nodes are placed on the computational points and they 
are not located on solid boundaries, an interface 
algorithm is needed for achieving the velocity on 
computational nodes. In the current study, the four-point 
interpolation scheme is applied to link between the 
Eulerian fluid nodes and Lagrangian particle points. The 
general forces acting on the particle are, (1) the forces 
acting on the surface of fixed particle and (2) the force 
resulting from accelerated mass.   
 
3. Validation 
To validate the proposed method, a step by step process 
is used. The validation consists of three benchmark 
problems i.e. (1) non-Newtonian fluid flow in a channel, 
(2) Newtonian fluid flow over an infinite cylinder with 
square cross-section, (3) falling of circular particle in a 
channel filled with Newtonian fluid. The current results 
have a good agreements with the previous study on all 
of the above-mentioned problems.  
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Fig. 1: Drag coefficient for Newtonian and non-Newtonian fluid 
flow over the square cylinder in steady (Re=40) and unsteady 

flows (Re=80). 
 
4. Results and Discussion 
Two different geometries including non-Newtonian flow 
over a stationary cylinder and falling particle in a 
channel filled with non-Newtonian fluids are considered.  
 
4-1- Non-Newtonian flow over an infinite stationary 
cylinder with square cross-section 
Fig. 1 shows the variation of drag coefficient with 
respect to non-Newtonian behavior index in Newtonian 
and non-Newtonian fluid flow over a square obstacle. 
Fig. 1 is depicted for both steady (Re=40) and unsteady 
(Re=80) flows. According to this Figure, the drag 
coefficient increases with the growth of non-Newtonian 
behavior index.  
 
4.2. Falling of square particle in different power-law 
fluids 
Fig. 2 shows the stream lines near the moving square 
cylinder in different shear-thinning, Newtonian and 
shear-thickening fluids after 50 seconds of beginning of 
motion. The differences of streamlines for different non-
Newtonian behavior indices are considerable.  
Also, the time histories of longitudinal velocity and 
position for a falling square particle in different power-
law fluids are presented in Figures 3 and 4, respectively. 
Although the differences in the variation of power-law 
index in Figs. 3 and 4 are rather small, they have 
remarkable variations on the presented results. This 
shows the significant effect of non-Newtonian behavior 
on particle motion.  
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Fig. 2. stream lines near the square cylinder in channel filled with 
shear-thinning (n=0.9), Newtonian (n=1.0), and shear-thickening 

fluids (n=1.1), Arpl=103. 
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Fig. 3. Time evaluation of particles’ longitudinal position for 
shear-thinning (n=0.9), Newtonian (n=1.0), and shear-thickening 

fluids (n=1.1). 
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Fig. 4. Time evaluation of particles’ longitudinal velocity for 
shear-thinning (n=0.9), Newtonian (n=1.0), and shear-thickening 

fluids (n=1.1). 
 
 
5. Conclusion 
The immersed boundary – non-Newtonian lattice 
Boltzmann method (IB-NLBM) is utilized to simulate 
the interface forces of fluid and solid structure. Two 
practical problems of non-Newtonian flow over 
stationary square obstacle and motion of square particle 
in non-Newtonian fluid are studied in details. The results 
show that the reduction of non-Newtonian behavior 
index leads to decreased accuracy of the problem. Also, 
the results indicate the significant effect of non-
Newtonian behavior on forces acting on stationary 
square obstacles and velocity of moving particles. For 
the case of non-Newtonian fluid flow over a stationary 
square cylinder, drag coefficient is increased by the 
growth of non-Newtonian behavior index for both 
steady and unsteady flows. Also the periodic time of lift 
coefficient for unsteady flows over stationary cylinder 
reduces by diminishing of non-Newtonian behavior 
index. In the case of falling particle in non-Newtonian 
power-law fluid, the terminal velocity of the particle 
increases with a reduction of shear-thickening behavior. 
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