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1- Introduction 
Recently, by improvement of technology using 
piezoelectric materials to increase load capacity, the 
enhancement of beam characterization has gained great 
attention. 

In this paper two piezoelectric patches have been 
attached to an Euler-Bernoulli beam in order to 
investigate the effects of the position and the length of 
piezoelectric actuator and also the effects of boundary 
conditions on natural frequency, vibration behavior and 
mechanical stability of the beam under axial force. The 
patches have been attached symmetrically to upper and 
lower surfaces of the beam. The derived equation of 
motion   is solved and the vibration behavior and the 
effects of different parameters like axial load, applied 
voltage, position and length of piezoelectric patches on 
natural frequencies and the critical load of the beam are 
investigated. 

2- The Mathematical model of Euler-Bernoulli beam 
with piezoelectric actuator 

An Euler-Bernoulli beam under axial load with two 
piezoelectric patches attached symmetrically to it is 
shown in Fig.1. 
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Fig. 1. Euler-Bernoulli beam (a) Clamped beam with 
piezoelectric actuator (b) Electric circuit of piezoelectric layer 
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 By applying electric voltage to the piezoelectric 
patches the resultant applied axial force can be 
calculated by the following formula: 

 

p 1 2F = P + F H(x - x ) - H(x - x )  (1) 

 
   By placing Eq.4 in Eq.3 and the proposed the answer 

as iωtw(x, t) = W(x)e , the equation of motion would be 

as follows: 
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Since the above equation could not be solved 

analytically, the Galerkin method is used. The answer of 
the equation is supposed to be as follows: 
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n

i i
i=1

W x = c x  (3) 

Where,  i x are comparative functions and satisfy the 

boundary conditions of the equation.  ic i = 1 n are 

unknown constants obtained by solving the 
characteristic equation. Placing the supposed answer (3) 
into the equation of motion and using the Galerkin 
method leads to: 
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 This equation can be written in matrix form as follows: 

     2K -ω M C = 0  (5) 

The above equation is the characteristic equation of the 
system. ω is the natural frequency of the system and 

 K and  M  are stiffness and mass matrices. In order 

for the homogeneous algebraic equation (5) to have 
nontrivial and nonzero answers, the determinant of the 
coefficient matrix should be zero. So, the characteristic 
equation of the system is as follows: 

 

   2
ndet( K -Ω M ) = 0  (6) 

Solving the above equation results in the obtained 
natural frequencies of the system. The natural 
frequencies are functions of not only the dimensions and 
the mechanical properties of the beam but also the 
magnitude of the axial force and the applied voltage of 
the piezoelectric actuators. 

3- Numerical Results 
In this section, the numerical analysis of vibration 
behavior and mechanical stability of the Euler-Bernoulli 
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beam with two piezoelectric patches attached 
symmetrically to its  upper and the lower surfaces is 
carried out. 

Fig.2 shows changes of the frequency ratio against 
piezoelectric patches length. As it is seen, by increasing 
piezoelectric patches length, the effect of the patches on 
natural frequencies is increased. 

Piezoelectric patches which are shorter than 20% of 
the beam’s length have an ignorable effect on the natural 
frequencies. By increasing the length of the patches, 
their effect on natural frequencies increases and finally 
after a certain length ratio (80%) the effect tends to 
reach a constant value. 

Fig.3 shows the effect of the position of the 
piezoelectric patches on the natural frequency ratio of 
the beam. As the patches approach the clamped end of 
the beam, the patches effect on the resultant stiffness of 
the structure decreases and it has less effect on the 
natural frequencies of the structure. In addition, 
piezoelectric patches have more effect on the first 
natural frequency of the beam than other natural 
frequencies. 
 

 
 

 
 

Fig.4 shows the effect of the position of the 4.5 mm 
long piezoelectric patches on the critical load ratio of the 
beam. The results show that with fixed actuator length 
and applied voltage, as the position of the patches 
approaches the free end of the clamped beam, the effect 
of the piezoelectric patches on the beam critical load 
increases. 

According to the results, piezoelectric patches at 0.4 
cm from the clamped end of the beam have the greatest 
effect on the natural frequency of the beam. 
 

 
 

4- Conclusion  
In this paper, using analytical model, the effects of two 
symmetrically attached piezoelectric actuators on the 
vibration behavior of an Euler-Bernoulli beam is 
investigated. The results shows that the applied voltage, 
the position and the length of the actuator as well as the 
piezoelectric actuator material have effects on natural 
frequencies of the beam. Setting optimizes the position 
and the length of piezoelectric actuators. By applying 
minimum electric voltage, changes in the natural 
frequencies and the critical load are maximized. This 
method is one of the applied methods for increasing load 
capacity and making changes in the natural frequencies 
in order to avoid resonance areas in structures under 
forced vibrations.  
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Fig.4 The Effect of piezoelectric actuator position 
on critical load ratio of the clamped beam 
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Fig.3 The effect of piezoelectric actuator position on the 
frequency ratio of the clamped beam
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Fig.2 The effect of piezoelectric actuator length on 
frequency ratio of the (a) Cantilever beam (b) 

Simply supported beam 
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