مدل‌سازی عددی ویسکوالاستیسیته‌ی خطی در نرم‌افزار روش اجزای محدود برای استفاده در مدل‌سازی فیزیک‌های چندگانه

نوع مقاله : مقاله کوتاه

نویسندگان

1 تهران

2 صنعتی مالک اشتر

چکیده

در این مقاله، قابلیت ایجاد یک مدل ویسکوالاستیک خطی در یک نرم افزار روش اجزاء محدود (COMSOL Multiphysics) مورد بررسی قرار گرفته است. معادلات حاکم بر رفتار ویسکوالاستیسیته خطی برای حالات تنش صفحه ای و کرنش صفحه ای ارائه شده است. درستی این معادلات و نحوه کاربرد آنها در قالب یک مثال مهندسی مورد بررسی و تایید قرار گرفته اند. از آنجایی که معادلات ارائه شده قابل استفاده در مدل سازی فیزیک های چندگانه می باشد، می توان از مدل ارائه شده در مدل سازی رفتار ویسکوالاستیک خطی به صورت کوپل شده با فیزیک های دیگر نیز استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Modeling of Linear Viscoelasticity in a Finite Element Method Software Package to be Used in Multiphysics Modeling

نویسندگان [English]

  • Mojtaba Haghighi Yazdi 1
  • Jafar Eskandari Jam 2
1
2
چکیده [English]

In this paper, the capabilities of modeling linear viscoelasticty in a finite element method software package (COMSOL Multiphysics) have been investigated. The governing equations of linear viscoelasticity have been developed for 2D cases of plane stress and plane strain. These equations have been verified by solving a related engineering example. Since the developed equations are suitable for modeling multiphysics mechanisms, the presented model can also be used in modeling linear viscoleasticity coupled with other multiphysics phenomena.

کلیدواژه‌ها [English]

  • Numerical Method
  • Finite Element Modeling
  • Linear Viscoelasticity
  • Rheological Model
  • Multiphysics
1. Gasser, T. C. and Forsell, C., "The Numerical Implementation of Invariant-based Viscoelastic Formulations at Finite Strains. An Anisotropic Model for the Passive Myocardium", Computer Methods in Applied Mechanics and Engineering, Vol. 200(49-52), pp. 3637-3645, (2011).
2. COMSOL Multiphysics 4.0a, COMSOL Inc., (2005).
3. Moravec, F. and Letzelter, N., "On the Modeling of the Linear Viscoelastic Behaviour of Biological Materials Using Comsol Multiphysics", Applied and Computational Mechanics, Vol. 1, pp. 175-184, (2007).
4. Marvalova, B., "Application of COMSOL Multiphysics 3.2 to Finite Strain Viscoelasticity of an Elastomeric Solid", Proceedings of the COMSOL Users Conference, Prague, October, (2006).
5. Rambert, G., Grandidier, J.-C. and Cangemi, L., "A Modelling of the Coupled Thermodiffuso-Elastic Linear Behaviour. Application to Explosive Decompression of Polymers", Oil &Gas Science and Technology – Rev. IFP, Vol. 58(5), pp. 571-591, (2003).
6. Rambert, G. and Grandidier, J.-C., "An Approach to the Coupled Behaviour of Polymers Subjected to a Thermo-Mechanical Loading in a Gaseous Environment", European Journal of Mechanics A/Solids, Vol. 24, pp. 151-168, (2005).
7. Rambert, G., Jugla, G. and Grandidier, J.-C., "A Modelling of the Direct Couplings between Heat Transfer, Mass Transport, Chemical Reactions and Mechanical Behaviour. Numerical Implementation to Explosive Decomposition", Composites: Part A, Vol. 37, pp. 571-584, (2006).
8. Rambert, G., Grandidier, J.-C. and Aifantis, E.C., "On the Direct Interactions between Heat Transfer, Mass Transport and Chemical Processes within Gradient Elasticity", European Journal of Mechanics, A/Solids, Vol. 26(1), pp. 68-87, (2007).
9. Sorvari, J. and Malinen, M., "Numerical Interconversion between Linear Viscoelastic Material Functions with Regularization", International Journal of Solids and Structures, Vol. 44, pp.
1291–1303, (2007).
10. Wilkes, J.O., "Fluid Mechanics for Chemical Engineers with Microfluidics and CFD", 2nd Edition, Prentice Hall, N. J., (2005).
11. Zimmerman, W.B.J., "Multiphysics Modelling with Finite Element Methods", World Scientific Pub., London, Hackensack, N.J., (2006).
12. COMSOL Multiphysics User's Guide, COMSOL Multiphysics 4.0a Documentation, (2010).
13. Taylor, R.L., Pister, K.S. and Goudreau, G.L., "Thermomechanical Analysis of Viscoelastic Solids", International Journal for Numerical Methods in Engineering, Vol. 2(1), pp. 45-59, (1970).
14. Haghighi-Yazdi, M. and Lee-Sullivan, P., "Stress Relaxation of a Polycarbonate Blend after Hygrothermal Aging", Mechanics of Time-Dependent Materials, Vol. 17, pp. 171-193, (2013).
15. Guo, Y. and Bradshaw, R.D., "Isothermal Physical Aging Characterization of Polyether-Ether-Ketone (PEEK) and Polyphenylene Sulfide (PPS) Films by Creep and Stress", Mechanics of Time-Dependent Materials, Vol. 11(1), pp. 61-89, (2007).
CAPTCHA Image