بررسی عددی و تحلیلی اثرات تفرق حرارتی بر انتقال حرارت جریان نانوسیال درون یک کانال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه بوعلی سینا همدان

2 بوعلی سینا همدان

چکیده

در مطالعۀ حاضر انتقال حرارت جریان نانوسیال از داخل یک کانال با آرایش‌های مختلفی از تزریق نانوذرات به‬عنوان عناصر تفرق حرارتی، بررسی شده‌است. در پدیدۀ انتقال حرارت حضور نانوذرات در جریان سیال به‬عنوان یکی از مهم‌ترین عوامل ایجاد تفرق یا پراکندگی حرارتی شناخته می‬شود. در این پژوهش نحوۀ توزیع عناصر تفرق حرارتی یا همان نانوذرات در کانال به سه صورت توزیع در منطقۀ مرکزی، توزیع در منطقۀ نزدیکی دیوار و توزیع در کل کانال درنظر گرفته شده‌است. اعتبارسنجی نتایج توسط راه‌حل تحلیلی برای یک وضعیت سادۀ مسئله و همچنین مقایسه با نتایج ارائه‌شده در مقالات گذشته، انجام شده‌است. حضور نانوذرات در منطقۀ مرکزی کانال، عدد ناسلت و ویژگی‌های انتقال حرارت را به‌شکل صعودی افزایش می‌دهد؛ اما برای آرایش مرزی، افزایش ضخامت نانوذرات تزریق‌شده منجر به یک رفتار صعودی- نزولی برای عدد ناسلت می‌شود، بنابراین در این توزیع، ضخامت بهینه‌ای برای عناصر تفرق به‌دست می‌آید. همچنین در بررسی توابع توزیع مختلف نانوذرات تزریق‌شده در کل کانال، مشاهده می‌شود که برخلاف توزیع سهموی که منجر به افزایش تقریباً خطی عدد ناسلت می‌شود، در توزیع نمایی و به‌خصوص به‌ازای مقادیر بزرگ‌تر ضریب تفرق، افزایش عدد ناسلت رفتاری غیرخطی دارد که مهم‌ترین وجه تمایز این دو تابع توزیع می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical and Analytical Investigation of Thermal Dispersion Effects on the Heat Transfer of Nanofluid flow inside a Channel

نویسندگان [English]

  • Habib-Olah Sayehvand 1
  • Amir Basiri Parsa 2
1 BuAli-Sina University
2 BuAli-Sina University
چکیده [English]

In the present study the heat transfer of nanofluid flow inside a channel with different arrangements of nanoparticles injection (dispersive elements) is investigated. In the heat transfer phenomena, nanoparticles presence in the fluid flow is known as one of the most important factor for the thermal dispersion. In this work, the distribution of dispersive elements or nanoparticles in the channel is considered to be uniformly distributed in the central region and near the walls. The validation of results is verified by the analytical solution for a simple state of the problem and also by comparison with previous published papers. The presence of the nanoparticels in the center region, increase the Nusselt number and heat transfer characteristics with an ascending form. For the boundary arrangement, increasing the thickness of injected nanoparticles lead to an ascending-descending behavior for Nusselt number. Therefore in this distribution, the optimum thickness for dispersive elements is obtained. Also it can be seen that the presence of the nanoparticels with parabolic distribution increase the Nusselt number with a univocal form. For the exponential arrangement, especially for large values of dispersive coefficient, increasing the Nusselt number has a nonlinear behavior that is the most important distinction of these two distribution functions.

کلیدواژه‌ها [English]

  • Channel
  • Heat transfer
  • Nanofluids
  • Thermal dispersion
1. Yang, Y., "Characterizations and Convective Heat Transfer Performance of Nanofluids", Ph. D thesis, Lehigh University, UMI Publisher, Ann Arbor, (2011).
2. Xuan, Y. and Qiang, Li., "Investigation on Convective Heat Transfer and Flow Features of Nanofluids", Journal of Heat Transfer, Vol. 125, No. 1, pp. 151-155, (2003).
3. Williams, W., Bourgiorno, J. and Hu, J., "Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluid) in Horizontal Tubes", Journal of Heat Transfer, Vol. 130, No. 4, pp. 42-48, (2008).
4. Rea, U., Mc rell, T. and Hu, L., "Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids", International Journal of Heat and Mass Transfer, Vol. 52, pp. 2042-2048, (2008).
5. Fotukian, S.M. and Nasr Esfahany, M., "Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube”, International Communications in Heat and Mass Transfer, Vol. 37, pp. 214-219, (2010).
6. Pak, B. and Cho, Y.I., "Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle”, Experimental Heat Transfer, Vol. 11, pp. 151-170, (1998).
7. Bianco, V., Manca, O. and Nardini, S., "Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube", International Journal of Thermal Sciences, Vol. 50 pp. 341-349, (2011).
8. Behzadmehr, A., Saffar-Avval, M. and Galanis, N., "Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach", International Journal of Heat and Fluid Flow, Vol. 28, pp. 211–219, (2007).
9. Yu, W., France, D.M., Timofeeva, E.V., Singh, D. and Routbort, J.L., "Convective Heat Transfer of Nanofluids in Turbulent Flow", Proceedings of Carbon Nano Materials and Applications Workshop, Rapid city, USA, pp. 118-129, October 30 -November 1, (2011).
10. Xuan, Y. and Roetzel, W., "Conceptions for heat transfer correlation of nanofluids", International Journal of Heat and Mass Transfer, Vol. 43, pp. 3701-3707, (2000).
11. Chang, P.Y., Shiah, S.W and Fu, M.N., "Mixed convection in a Horizontal square packed-sphere channel under axially uniform heating peripherally uniform wall temperature", Numerical Heat Transfer, Vol. 45, pp. 791-809, (2004).
12. Hancu, S., Ghinda, T., Ma, L., Lesnic, D. and Ingham, D.B., "Numerical modeling and experimental investigation of the fluid flow and contaminant dispersion in a channel", International Journal of Heat and Mass Transfer, Vol. 45, pp. 2707-2718, (2002).
13. Kuznetsov, A.V., Cheng, L. and Xiong, M., "Effects of thermal dispersion and turbulence in forced convection in a composite parallel-plate channel: investigation of constant wall heat flux and constant wall temperature cases", Numerical Heat Transfer, Vol. 42, pp. 365-383, (2002).
14. Gunn, D.J., "An analysis of convective dispersion and reaction in the fixed-bed reactor", International Journal of Heat and Mass Transfer, Vol. 48, pp. 2861-2875, (2004).
15. Metzger, T., Didierjean, S. and Maillet, D., "Optimal experimental estimation of thermal dispersion coeffcients in porous media", International Journal of Heat and Mass Transfer, Vol. 47, pp. 3341-3353, (2004).
16. Amiri, A. and Vafai, K., "Analysis of dispersion effects and non-thermal equilibrium non-Darcian, variable porosity incompressible flow through porous medium", International Journal of Heat and Mass Transfer, Vol. 37, pp. 939-954, (1994).
17. Li, Q. and Xuan, Y., "Convective heat transfer and flow characteristics of cu-water nanofluid", Science in China (Series E), Vol. 45, pp. 408-416, (2002).
18. Khaled, A.R.A. and Vafai, K., "Heat transfer enhancement through control of thermal dispersion effects", International Journal of Heat and Mass Transfer, Vol. 48, pp. 2172-2185, (2005).
19. Shahnazari, M.R., Ziabasharhagh, M. and Talsaz, H., "Comparison of Thermal Dispersion Effects for Single and Two Phase Analysis of Heat Transfer in Porous Media", International Journal of Engineering-Transactions B: Applications, Vol. 24, No. 1, pp. 81-91, (2011).
20. Kameswaran, P.K. and Sibanda, P., "Thermal dispersion effects on convective heat and mass transfer in an Ostwald de Waele nanofluid flow in porous media", Boundary Value Problems, Vol. 27, pp. 243-270, (2013).
21. Wasp, F.J., "Solid–liquid Slurry Pipeline Transportation", Trans. Tech., Berlin, (1977).
22. Blottner, F.G., "Finite-difference methods of solution of the boundary-layer equations", AIAA Journal, Vol. 8, pp. 193-205, (1970).
CAPTCHA Image