مقایسۀ مدل‎های تکفازی، مخلوط دوفازی و اولری-اولری در شبیه‎سازی برخورد جت نانوسیالات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد مشهد

2 دانشگاه آزاد اسلامی، واحد مشهد، گروه مکانیک، مشهد، ایران

چکیده

این مقاله به بررسی تبادل حرارت در برخورد جت نانوسیالات می‎پردازد. هدف، مقایسۀ مدل‎های تکفازی و دوفازی در تحلیل جریان نانوسیالات و هم‎چنین مطالعۀ رفتار سیال پایه و نانوذرات به طور مجزا در مدل دوفازی اولری-اولری می‎باشد. برای این منظور، برخورد جت نانوسیال آب/Al2O3 در حالت‎های مختلف با مدل‎های تکفازی، مخلوط دوفازی و دوفازی اولری-اولری شبیه‎سازی شده و نتایج به‎دستآمده مورد تجزیه و تحلیل قرار می‎گیرد. برای حل معادلات حاکم در هر سه مدل از روش حجممحدود استفاده می‎شود. صحت شبیه‎سازی‎های انجام شده با مقایسۀ نتایج به‎دستآمده با نتایج موجود به اثبات می‎رسد. نتایج نشان می‎دهند که در کلیۀ رویکردها، افزایش عدد رینولدز و بالارفتن کسر حجمی نانوذرات، بهبود تبادل حرارت را در پی دارد. در محاسبات انجام شده، مدلهای دوفازی انتقال حرارت بیشتری را نسبت به مدل تکفازی پیش‎بینی می‎کنند. مقایسۀ دقیق رویکردهای دوفازی نیز بیانگر انتقال حرارت بیشتر مدل اولری-اولری نسبت به مدل مخلوط می‎باشد. با این وجود، مشخص می‎شود که با افزایش عدد رینولدز و کاهش کسر حجمی نانوذرات، نتایج این دو روش به هم نزدیک‎تر می‏شوند. درنهایت، مدل اولری-اولری نشان می‎دهد که توزیع دما در سیال پایه و نانوذرات یکسان است اما توزیع سرعت‎ها با یکدیگر متفاوت می‎باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison between Single-Phase, Two-Phase Mixture and Eulerian-Eulerian Models for the Simulation of Jet Impingement of Nanofluids

نویسندگان [English]

  • edris torshizi 1
  • Iman Zahmatkesh 2
1 Islamic Azad University
2 Department of Mechanical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
چکیده [English]

This paper deals with heat transfer in jet impingement of nanofluids. Attention is focused to compare single-phase and two-phase nanofluid models and to study separate behaviors of the base fluid and the nanoparticles through the Eulerian-Eulerian two-phase model. For this purpose, jet impingement of Al2O3/water nanofluid in different conditions is simulated adopting the single-phase, two-phase mixture and Eulerian-Eulerian models and the corresponding results are discussed. For the solution of the governing equations of the three models, the control-volume approach is used. The accuracy of the current simulations is demonstrated by comparing the obtained results with those of open literature. The results indicate that in all of the approaches, increase in the Reynolds number as well as nanoparticle fraction leads to heat transfer improvement. During the current computations, the two-phase models predict higher heat transfer as compared to the single-phase model. Closer scrutiny of the two-phase approaches indicates that heat transfer of the Eulerian-Eulerian model is higher than the mixture model. However, it is found that with increase in the Reynolds number and decrease in the nanoparticle fraction, results of the two approaches become closer. Finally, the Eulerian-Eulerian model demonstrates that temperature distribution in the base fluid and the nanoparticles are similar but the corresponding velocity distributions are distinct.

کلیدواژه‌ها [English]

  • Nanofluid, Jet impingement
  • Single-phase model
  • Two-phase mixture model
  • Eulerian-Eulerian model
  • Numerical simulation
1. Maxwell, J.C., "A Treatise on Electricity and Magnetism", Clarendon Press, Oxford, (1873).
2. Choi, S.U.S. and Eastman, J.A., "Enhancing thermal conductivity of fluids with nanoparticles", International Mechanical Engineering Congress and Exhibition, San Francisco, U.S.A, (1995).
3. Das, S.K., Choi, S.U.S. and Patel, H.E., "Heat transfer in nanofluids-a review", Heat Transfer Engineering, Vol. 27, No. 10, pp. 3-19, (2006).
4. Jambunathan, K., Lai, E., Moss, M.A. and Button, B.L., "A review of heat transfer data for single circular jet impingement", International Journal of Heat and Fluid Flow, Vol. 13, No. 2, pp. 106-115, (1992).
5. Liu, X., Lienhard, J.H. and Lombara, J.S., "Convective heat transfer by impingement of circular liquid jets", Journal of Heat Transfer, Vol. 113, No. 3, pp. 571-582, (1991).
6. Ma, C.F., Zhao, Y.H., Masuoka, T. and Gomi, T., "Analytical study on impingement heat transfer with single-phase free-surface circular liquid jets", Journal of Thermal Science, Vol. 5, No. 4, pp. 271-277, (1996).
7. Lee, H.G., Yoon, H.S. and Ha, M.Y., "A numerical investigation on the fluid flow and heat transfer in the confined impinging slot jet in the low Reynolds number region for different channel heights", International Journal of Heat and Mass Transfer, Vol. 51, No. 15-16, pp. 4055-4068, (2008).
8. Roy, G., Nguyen, C.T. and Lajoie, P.R., "Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids", Superlattices and Microstructures, Vol. 35, No. 3-6, pp. 497-511, (2004).
9. Palm, S.J., Roy, G. and Nguyen, C.T., "Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties", Applied Thermal Engineering, Vol. 26, No. 17-18, pp. 2209-2218, (2006).
10. Yang, Y.T. and Lai, F.H., "Numerical study of heat transfer enhancement with the use of nanofluids in radial flow cooling system", International Journal of Heat and Mass Transfer, Vol. 53, No. 25-26, pp. 5895-5904, (2010).
11. Yang, Y.T. and Lai, F.H., "Numerical investigation of cooling performance with the use of Al2O3/water nanofluids in a radial flow system", International Journal of Thermal Sciences, Vol. 50, No. 1, pp. 61-72, (2011).
12. Manca, O., Mesolella, P., Nardini, S. and Ricci, D., "Numerical study of a confined slot impinging jet with nanofluids", Nanoscale Research Letters, Vol. 6, No. 1:188, (2011).
13. Lorenzo, G.D., Manca, O., Nardini, S. and Ricci, D., "Numerical study of laminar confined impinging jets with nanofluids", Advances in Mechanical Engineering, Article ID 248795, (2012).
14. Selimefendigil, F. and Oztop, H.F., "Pulsating nanofluids jet impingement cooling of a heated horizontal surface", International Journal of Heat and Mass Transfer, Vol. 69, pp. 54-65, (2014).
15. Nguyen, C.T., Galanis, N., Polidori, G., Fohanno, S., Popa, C.V. and Bechec, A.L., "An experimental study of a confined and submerged impinging jet heat transfer using Al2O3-water nanofluid", International Journal of Thermal Sciences, Vol. 48, No. 2, pp. 401-411, (2009).
16. Gherasim, I., Roy, G., Nguyen, C.T. and Vo-Ngoc, D., "Experimental investigation of nanofluids in confined laminar radial flows", International Journal of Thermal Sciences, Vol. 48, No. 8, pp. 1486-1493, (2009).
17. Behzadmehr, A., Saffar-Avval, M. and Galanis, N., "Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two-phase approach", International Journal of Heat and Fluid Flow, Vol. 28, No. 2, pp. 211-219, (2007).
18. Mirmasoumi, S. and Behzadmehr, A., "Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model", Applied Thermal Engineering, Vol. 28, No. 8, pp. 717-727, (2008).
19. Haghshenas Fard, M., Esfahany, M.N. and Talaie, M.R., "Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model", International Communications in Heat and Mass Transfer, Vol. 37, No. 1, pp. 91-97, (2010).
20. Manavi, S.A., Ramiar, A. and Ranjbar, A.A., "Turbulent forced convection of nanofluid in a wavy channel using two phase model", Heat and Mass Transfer, Vol. 50, No. 5, pp. 661-671, (2014).
21. Kalteh, M., Abbassi, A., Saffar-Avval, M. and Harting, J., "Eulerian-Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel", International Journal of Heat and Fluid Flow, Vol. 32, No. 1, pp. 107-116, (2011).
22. Kalteh, M., Abbassi, A., Saffar-Avval, M., Frijns, A., Darbuber, A. and Harting, J., "Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink", Applied Thermal Engineering, Vol. 36, pp. 260-268, (2012).
23. Akbari, M., Galanis, N. and Behzadmehr, A., "Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer", International Journal of Thermal Sciences, Vol. 50, No. 8, pp. 1343-1354, (2011).
24. Maiga, S.E., Nguyen, C.T., Galanis, N. and Roy, G., "Heat transfer behaviors of nanofluids in a uniformly heated tube", Superlattices and Microstructures, Vol. 35, No. 3-6, pp. 543-557, (2004).
25. Maxwell-Garnett, J.C., "Colours in metal glasses and in metallic films", Philosophical Transactions A, Vol. 203, pp. 385-420, (1904).
26. Manninen, M., Taivassalo, V. and Kallio, S., "Analysis on the mixture model for multiphase flow", VTT Technical Research Center, Finland, pp. 9-18, (1996).
27. Syamlal, M. and Gidaspow, D., "Heat hydrodynamics of fluidization: prediction of wall to bed heat transfer coefficients", AIChE Journal, Vol. 31, No. 1, pp. 127-135, (1985).
28. Drew, D.A. and Lahey, R.C., "Analytical modeling of multiphase flow", In: Roco M.C., editor. Particulate Two-Phase Flow, Butterworth–Heinemann, Boston, pp. 509-566, (1993).
29. Bouillard, J.X., Lyczkowski, R.W. and Gidaspow, D., "Porosity distributions in a fluidized bed with an immersed obstacle", AIChE Journal, Vol. 35, No. 6, pp. 908-922, (1989).
30. Wakao, N. and Kaguei, S., "Heat and Mass Transfer in Packed Beds", Gordon and Breach, New York, (1982).
31. Kuipers, J.A.M., Prins, W. and Van Swaaij, W.P.M., "Numerical calculation of wall-to-bed heat-transfer coefficients in gas-fluidized beds", AIChE Journal, Vol. 38, No. 7, pp. 1079-1091, (1992).
32. Patankar, S.V., "Numerical Heat Transfer and Fluid Flow", Hemisphere, McGraw-Hill, Washington DC, (1980).
33. Vasquez, S.A. and Ivanov, V.A., "A phase coupled method for solving multiphase problems on unstructured meshes", Proceedings of the ASME Fluids Engineering Division Summer Meeting, Vol. 1, Boston, (2000).
CAPTCHA Image