بهبود کیفیت اپتیکی ورق پلی‬متیل‬متاکریلات به‌کمک روش شکل‌دهی با لاستیک

نوع مقاله : مقاله پژوهشی

نویسندگان

اصفهان

چکیده

پلی‬ متیل‬ متاکریلات (پی.ام.ام.آ) یکی از پلیمرهای شفاف است که عموماً به‌روش شکل‬دهی حرارتی، شکل داده می‬شود. یکی از نکات مهم در تولید این محصول کیفیت اپتیکی آن است. به‌این‌منظور، استفاده از شبیه‬سازی فرایند در نرم‬افزار اجزای محدود، از اهمیت بالایی برخوردار است. در این مقاله فرایند شکل‬دهی پی.ام.ام.آ به‌کمک رفتار الاستیک- پلاستیک ماده شبیه‬سازی و پس از مقایسۀ نتایج حاصل با نتایج تجربی حاصل از آزمایش‌های عملی، صحت شبیه‬سازی با مدل الاستیک‬- پلاستیک بررسی می‬گردد. سپس بااستفاده از شکل‌دهی به‌کمک لاستیک، روند توزیع ضخامت و کرنش برشی نهایی قطعه در اختیار قرار می‌گیرد و محصولی با ویژگی‌ها و کیفیت مطلوب به‌دست می‌آید. با انتخاب لاستیکی با خواص نزدیک به ورق، می‌توان از اثر گذاشتن آن برروی ورق در حین فرایند شکل‌دهی جلوگیری نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Improving Optical Quality of Poly methyl methacrylate Sheet by Forming with Rubber

نویسندگان [English]

  • majid rezaei
  • Kourosh Hasanpour
Isfahan
چکیده [English]

Poly methyl methacrylate (PMMA) is one of the transparent polymers prevalently formed through thermoforming process. One of the important factors in this production is its optical quality. Using finite element simulation is very important to this aim. In this paper, PMMA thermoforming process is simulated using elastic-plastic model and accuracy of the results is verified by comparison with that of experimental data optained from tests. Then, thickness distribution and final shear strain are controlled by forming with rubber and a product with appropriate properties and quality is obtained. By choosing rubber with properties similar to the sheet, the rubber effects on sheet can be prevented..

کلیدواژه‌ها [English]

  • Poly Methyl Meth Acrylate
  • Thermoforming
  • simulation
  • Optical properties
  • Rubber
1. Carlone, P. and Palazzo, G.S., "Finite Element Analysis of the Thermoforming Manufacturing Process Using the Hyper elastic Mooney-Rivlin Model", International Conference on Computational Science and Its Applications (ICCSA), Glasgow, UK, Vol. 3980, pp. 794-803, (2006).
2. Dong, Y., Lin, R.J.T. and Bhattacharyya, D., "Determination of critical material parameters for numerical simulation of acrylic sheet forming", Journal of Material Science, Vol. 40, pp. 399–410, (2005).
3. Dong, Y., Lin, R.J.T. and Bhattacharyya, D., "Finite element simulation of thermoforming acrylic sheets using dynamic explicit method", Journal of Polymer and Composite, Vol. 14, pp. 307–328, (2006).
4. Satarian, M., "Reconnaissance Behavior of poly methyl methacrylate in the Free forming Process Using Simulation and Practical test", MSc Thesis, Department of Mechanical Engineering, Najaf Abad University, Isfahan, (2010).
5. Throne, J.L., "Thermoforming", First Edition, Hanser Publication, New York, (1987).
6. Senn, T., Waberski, Ch., Wolf, J., Esquivel, J.P., Sabate, N. and Löchel, B., "3D structuring of polymer parts using thermoforming processes", Journal of Microelectron Engineering, Vol. 88, pp. 11–16, (2011).
7. Amiri, E., "A Finite Element Investigation on Thickness Distribution of PMMA Sheets in a Combination of Free Forming and Plug Assistance Forming", 17th Annual (International) Conference on Mechanical Engineering (ISME), University of Tehran, Iran,. (2009).
8. R´egnier, G., Gilormini, P. and Chevalier, L., "Thermoforming poly (methyl methacrylate) transparencies", Society of Plastics Engineers, Vol. 40, pp. 376-388, (2010).
9. Varghese, A.G. and Batra, R.C., "Constitutive equations for thermo mechanical deformations of glassy polymers", International Journal of Solids and Structures, Vol. 46, pp. 4079–4094, (2009).
10. Krevelen, D.W. and Nijenhuis, K.T., "Properties of Polymers", Fourth Edition, Elsevier Publication, Netherland, (2009).
11. Richeton, J., Ahzi, S., Vecchio, K.S., Jiang, F.C. and Makradi, A., "Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates", International Journal of Solids and Structures, Vol. 44, pp. 7938–7954, (2007).
12. O’Connor, C.P.J., Menary, G., Martin, P.J. and McConville, E., "Finite element analysis of the thermoforming of Polypropylene", International Journal of Material Forming, Vol. 1, pp. 779-782, (2008).
13. Scheer, H.C., Bogdanski, N., Wissen, M., Konishi, T. and Hirai, Y., "Polymer time constants during low temperature Nano imprint lithography", Journal of Vacuum Science and Technology, Vol. 23, pp. 2963-2966, (2005).
14. Azdast, T., Doniavi, A., Ahmadi, S.R. and Amiri, E., "Numerical and experimental analysis of wall thickness variation of a hemispherical PMMA sheet in thermoforming process", The International Journal of Advanced Manufacturing Technology, Vol. 64, pp. 113-122, (2013).
15. Dunne, F. and Petrinic, N., "Introduction to Computational Plasticity", Oxford University Press, United Kingdom, (2005).
16. McLachlan, J.G., Kim-Anh, D. and Ambroise, C., "Analyzing Microarray Gene Expression Data", First Edition, Wiley-Interscience, London, (2004).
CAPTCHA Image