مدل‌سازی تحلیلی احتراق جریان متقابل نفوذی ابرذرات

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه علم و صنعت

چکیده

در این پژوهش، مدل‌سازی احتراق جریان متقابل ابرذرات نفوذی مورد بررسی قرار گرفت. مدل ارائه‌شده مبتنی بر این فرض است که ذرات سوخت ابتدا تبخیر می‌شوند تا سوخت گازی را برای ورود به واکنش با اکساینده تولید نمایند. واکنش صورت‌گرفتۀ مفروض، از قانون آرنیوس پیروی می‌کند. معادلات بقا به‌صورت تحلیلی حل شدند و دمای شعله برحسب تغییرات اعداد لوئیس سوخت و اکساینده ارائه شد. هم‌چنین روند تغییر موقعیت شعله با تغییر اعداد لوئیس مورد ارزیابی قرار گرفت و مشخص شد که دمای شعله با افزایش اعداد لوئیس سوخت و اکساینده، کاهش می‌یابد به‌طوری‌که با افزایش عدد لوئیس سوخت از 1/0 تا 4/1، دمای شعله ‌دریج از 1943 به 1473 درجۀ کلوین کاهش می‌‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Analytical Modeling of a Counterflow Diffusion Flame of a Dust Cloud

نویسندگان [English]

  • Mehdi Bidabadi
  • Milad Ramezanpour
  • Alireza Khoeini Poorfar
Iran University of Science and Technology
چکیده [English]

Diffusion Flame in a Dust cloud combustion in a Counterflow configuration is investigated in this research. It is presumed that the fuel particles vaporize first to yield a gaseous fuel to oxidize with the gas phase. The reaction rate is assumed to be of the Arrhenius type. Conservation equations for the non-unity Lewis number are solved and the flame temperature with the variations of different Lewis numbers of fuel and oxidizer is proposed. Furthermore, the variations of flame position with the variation of Lewis number are evaluated. It has been found that the flame temperature decreases with increasing of fuel and oxidizer Lewis numbers, which for rise of fuel Lewis number from 0.1 to1.4, the flame temperature decreases from 1943 to 1473K.

کلیدواژه‌ها [English]

  • Dust Cloud Combustion
  • Counterflow
  • Diffusion Flame
  • Analytical Solution
1. Eckhoff, R., “Dust explosions in the process industries: identification, assessment and control of dust hazards”, Gulf professional publishing, pp. 1-3, (2003).
2. Han, O.-S., Yashima, M., Matsuda, T., Matsui , H., Miyake, A. and Ogawa, T., “Behavior of flames propagating through lycopodium dust clouds in a vertical duct”, J. Loss Prev. Process Ind., Vol. 13, No. 6, pp. 449–457, (2000).
3. Cashdollar, K.L., “Overview of dust explosibility characteristics”, J. Loss Prev. Process Ind., Vol. 13, No. 3, pp. 183–199, (2000).
4. Hanai, H., Kobayashi, H. and Niioka, T., “A numerical study of pulsating flame propagation in mixtures of gas and particles”, Proc. Combust. Inst., Vol. 28, No. 1, pp. 815–822, (2000).
5. Liu, Y., Sun, J. and Chen, D., “Flame propagation in hybrid mixture of coal dust and methane,” J. Loss Prev. Process Ind., Vol. 20, No. 4, pp. 691–697, (2007).
6. Proust, C., “Flame propagation and combustion in some dust-air mixtures”, J. Loss Prev. Process Ind., Vol. 19, No. 1, pp. 89–100, (2006).
7. Seshadri, K., Berlad, A.L. and Tangirala, V., “The structure of premixed particle-cloud flames,” Combust. Flame, Vol. 89, No. 3, pp. 333–342, (1992).
8. Bidabadi, M. and Rahbari, A., “Modeling combustion of lycopodium particles by considering the temperature difference between the gas and the particles”, Combust. Explos. Shock Waves, Vol. 45, No. 3, pp. 278–285, (2009).
9. Bidabadi M. and Rahbari, A., “Novel analytical model for predicting the combustion characteristics of premixed flame propagation in lycopodium dust particles”, J. Mech. Sci. Technol., Vol. 23, No. 9, pp. 2417–2423, (2009).
10. Haghiri, A. and Bidabadi, M., “Modeling of laminar flame propagation through organic dust cloud with thermal radiation effect”, Int. J. Therm. Sci., Vol. 49, No. 8, pp. 1446–1456, (2010).
11. Daou, R., Daou, J. and Dold, J., “Effect of heat-loss on flame-edges in a premixed counterflow,” Combust. Theory Model., Vol. 7, No. 2, pp. 221–242, (2003).
12. فرشادی، سیروس، “احتراق جریان متقابل ابرذرات ارگانیک”، پایان‌نامه کارشناسی ارشد مهندسی مکانیک (تبدیل انرژی)، دانشکدۀ مهندسی مکانیک، دانشگاه علم و صنعت ایران، (1392).
13. Linan, A., “The asymptotic structure of counterflow diffusion flames for large activation energies,” Acta Astronaut., Vol. 1, No. 7, pp. 1007–1039, (1974).
14. Seshadri, K. and Trevino, C., “The influence of the Lewis numbers of the reactants on the asymptotic structure of counterflow and stagnant diffusion flames”, Combust. Sci. Technol., Vol. 64, No. 4–6, pp. 243–261, (1989).
15. Dvorjetski, A. and Greenberg, J.B., “Influence of non-unity Lewis numbers and droplet loading on the extinction of counter-flow spray diffusion flames”, Proc. Combust. Inst., Vol. 28, No. 1, pp. 1047–1054, (2000).
16. Wichman, I.S. and Yang, M., “Double-spray counterflow diffusion flame model”, Strain, Vol. 2, p. 2, (1998).
17. Daou, R., Daou, J. and Dold, J., “The effect of heat loss on flame edges in a non-premixed counterflow within a thermo-diffusive model”, Combust. Theory Model., Vol. 8, No. 4, pp. 683–699, (2004).
18. Fendell, F.E., “Ignition and extinction in combustion of initially unmixed reactants”, J. Fluid Mech., Vol. 21, No. 02, pp. 281–303, (1965).
19. Abramowitz, M. and Stegun, I.A., “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. Tenth Printing.,” (1972).
20. Burden, R.L. and Faires, J.D., “Numerical analysis. 2001”, Brooks/Cole, USA, (2001).
21. Rockwell, S.R. and Rangwala, A.S., “Modeling of dust air flames”, Fire Saf J., Vol. 59, pp. 22–29, (2013)
CAPTCHA Image