روش مرز غوطه‌ور– شبکۀ بولتزمن برای شبیه‌سازی حرکت ذره در سیالات غیرنیوتنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه بجنورد

2 دانشگاه شاهرود

چکیده

در مطالعۀ حاضر روش ترکیبی مرزغوطه‌ور- شبکۀ بولتزمن غیرنیوتنی برای شبیه‌سازی نیروهای وارد بر ذره و هم‌چنین محاسبۀ سرعت حرکت ذره در مجاورت سیالات غیرنیوتنی مختلف، توسعه داده شده است. در این تحقیق، اثرات نیروی اضافی ناشی از وجود جرم شتابدار نیز در معادلات حرکت غیرنیوتنی ذره لحاظ شده‌اند. دو مسئلۀ کاربردی شامل جریان سیال غیرنیوتنی توانی از روی سیلندر ثابت با سطح مقطع مربعی و سقوط یک ذرۀ مربعی در سیالات غیرنیوتنی با خواص مختلف رقیق‌برشی و ضخیم‌برشی بررسی شده است. نتایج نشان می‌دهند که نیروی وارد بر سیلندر در حالت ثابت و سرعت حد ذره در حال سقوط با افزایش شاخص رفتار غیرنیوتنی توانی به‌ترتیب افزایش و کاهش قابل ملاحظه‌ای را تجربه خواهند نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of Particle Motion in Non-Newtonian Fluids by Immersed Boundary Lattice Boltzmann Method

نویسندگان [English]

  • Amin Amiri Delouei 1
  • Mohammad Hassan Kayhani 2
  • Mohsen Nazari 2
1 University of Bojnord
2 University of Shahrood
چکیده [English]

In the current study, the immersed boundary – non-Newtonian lattice Boltzmann method is developed for simulation of forces act on a particle and also for computation of the particle velocity in vicinity of non-Newtonian fluids. In this research, the effect of extra force due to accelerated mass is also considered in non-Newtonian particle motion equations. Two applied problems of power-law non-Newtonian fluid flow over a stationary cylinder with square cross-section and a square falling particle in non-Newtonian fluids with different shear-thinning and shear-thickening behaviour are investigated. Results indicate that the force act on stationary cylinder and ultimate velocity of falling particle will experience considerable increase and decrease with growth of power-law non-Newtonian behaviour index, respectively.

کلیدواژه‌ها [English]

  • Immersed boundary method
  • Lattice Boltzmann method
  • Direct Numerical Simulation
  • Power-law non-Newtonian fluids
  • Square cross-section
1. Feng, Z.G. and Michaelides, E.E., "The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems", Journal of Computational Physics, Vol. 195, pp. 602–628, (2004).
2. Leal, L.G., “The Motion of Small Particles in Non-Newtonian Fluids”, Journal of Non-Newtonian Fluid Mechanics, Vol. 5, pp. 33-78, (1979).
3. Feng, Z.G. and Michaelides, E.E., "Proteus: a direct forcing method in the simulations of particulate flows", Journal of Computational Physics, Vol. 202, pp. 20–51, (2005).
4. Feng, J., Hu, H.H. and Joseph, D.D., "Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1: sedimentation", J. Fluid Mech., Vol. 261, pp. 95–134, (1994).
5. Yu, Z., Phan-Thien, N., Fan, Y. and Tanner, R.I., "Viscoelastic mobility problem of a system of particles", J. Non-Newtonian Fluid Mech., Vol. 104, pp. 87–124, (2002).
6. Hu, H.H., Joseph, D.D. and Crochet, M.J., "Direct simulation of fluid particle motions", Theor. Comp. Fluid Dyn., Vol. 3, pp. 285–306, (1992).
7. Wu, J. and Shu, C., "Particulate Flow Simulation via a Boundary Condition-Enforced Immersed Boundary-Lattice Boltzmann Scheme", Commun. Comput. Phys., Vol. 7, No. 4, pp. 793-812, (2010).
8. Hu, H.H., "Direct Simulation of Flows of Solid-Liquid Mixtures", Int. J. Multiphase Flow, Vol. 22, No. 2, pp. 335-352, (1996).
9. Patankar, N.A., Singh, P., Josepha, D.D., Glowinski, R. and Panc, T.-W., "A New Formulation of the Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows", Int. J. Multiphase Flow, Vol. 26, pp. 1509-1524, (2000).
10. Glowinski, R., Pan T.W., Hesla, T.I., Joseph, D.D. and Periaux, J., "A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies: Application to Particulate Flow", Journal of Computational Physics, Vol. 169, pp. 363–426, (2001).
11. Wan, D. and Turek, S., "Direct Numerical Simulation of Particulate Flow via Multigrid FEM Techniques and the Fictitious Boundary Method", Int. J. Numer. Meth. Fluids, Vol. 51, pp. 531-566, (2006).
12. Peskin, C.S., "Flow patterns around heart valves: a digital computer method for solving the equations of motion", PhD thesis, Physiol, Albert Einstein Coll. Med., Univ. Mi- crofilms, (1972).
13. Succi, S., "The Lattice Boltzmann Equation for Fluid Dynamics and Beyond", Oxford Univ.Press, New York, (2001).
14. Artoli, A.M. and Sequeira, A., "Mesoscopic simulations of unsteady shear-thinning flows", in: Lecture Notes in Comput. Sci. Springer, Berlin. Vol. 3992, pp. 78–85, (2006).
15. Gabbanelli, S., Drazer, G. and Koplik, J., "Lattice Boltzmann method for non-Newtonian (Power-Law) fluids", Phys. Rev. E., Vol. 72, pp. 046312, (2005).
16. Aharonov, E. and Rothman, D.H., "Non-Newtonian flow (through porous-media): a lattice Boltzmann method", Geophys. Res. Lett., Vol. 20, pp. 679-682, (1993).
17. Ladd, A.J.C., "Numerical simulations of particulate suspensions via a discretized Boltzmann equation. I. Theoretical foundation", J. Fluid Mech., Vol. 271, pp. 285-310, (1994).
18. Niu, X.D., Shu, C., Chew, Y.T. and Peng, Y., "A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows", Physics Letters A, Vol. 354, pp. 173–182, (2006).
19. Mohd-Yusof, J., "Combined immersed boundaries/B-splines methods for simulations of flows in complex geometries", Annual Research Briefs, Center for Turbulence Research, Stanford University, (1997).
20. Kang, S.K. and Hassan, Y.A., "A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries", Int. J. Numer. Meth. Fluids, Vol. 66, pp. 1132–1158, (2011).
21. Amiri Delouei, A., Nazari, M., Kayhani, M.H. and Succi, S., "Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary–thermal lattice Boltzmann method", Physical Review E, Vol. 89, pp. 053312-1 - 053312-13, (2014).
22. Kang, S.K., "Immersed Boundary Methods in The Lattice Boltzmann Equation for Flow Simulation", Ph.D. thesis, Texas A&M University, (2010).
23. Leal, L.G., "The Motion of Small Particles in Non-Newtonian Fluids", Journal of Non-Newtonian Fluid Mechanics, Vol. 5, pp. 33-78, (1979).
24. Huang, P.Y., Hu, H.H. and Joseph, D.D., "Direct simulation of the sedimentation of elliptic particles in Oldroyd-B fluids", J. Fluid Mech., Vol. 362, pp. 297-325, (1998).
25. Guo, Z., Zheng, C. and Shi, B., "Discrete lattice effects on the forcing term in the lattice Boltzmann method", Physical Review E; Vol. 65, pp. 046308, (2002).
26. Qian, Y.H., d’Humieres, D. and Lallemand, P., "Lattice BGK model for Navier-Stokes equation", Europhys. Lett., Vol. 17, pp. 479-484, (1992).
27. Scott Blair, G.W., Hening, J.C. and Wagstaff, A., "The flow of cream through narrow glass tubes", Phys. Chem., Vol. 43, No. 7, pp. 853–864, (1939).
28. Chopard, B. and Droz, M., "Cellular Automata Modeling of Physical Systems", Cambridge University Press, Cambridge, UK, (1998).
29. Peskin, C.S., "The immersed boundary method", Acta Numerica, pp. 479-517, (2002).
30. Wang, C-H. and Ho, J.R., "A lattice Boltzmann approach for the non-Newtonian effect in the blood flow", Computers and Mathematics with Applications, Vol. 62, pp. 75–86, (2011).
31. Dhiman, A.K., Chhabra, R.P. and Eswaran V., "Steady Flow of Power-Law Fluids Across a Square Cylinder", Chemical Engineering Research and Design, Vol. 84, pp. 300–310, (2006).
32. Chatterjee, D. and Chatterjee, K., "Unconfined Flow and Heat Transfer around a Square Cylinder at Low Reynolds and Hartmann Numbers", International Journal of Fluid Mechanics Research, Vol. 40, pp. 71-90, (2013).
33. Wu, J., Shu, C. and Zhao, N., "Simulation of Thermal Flow Problems via a Hybrid Immersed Boundary-Lattice Boltzmann Method", J. Appl. Math., Vol. 2012, pp. 161484-1 161484-11, (2012).
34. Best, A.C., "Empirical formulae for the terminal velocity of water drops falling through the atmosphere", Quart. J. Roy. Meteor. Soc., Vol. 76, pp. 302-311, (1950).
35. Chhabra, R.P., "Bubbles, Drops and Particles in Non-Newtonian Fluids", Second ed., FL: CRC Press, Boca Raton, (2006).
CAPTCHA Image