مطالعه راندمان اختلاط یک ریزمخلوطگر الکترواسمتیکی با توزیع ناهمگن بارهای دیواره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه بیرجند

2 فردوسی مشهد

چکیده

در این مقاله یک ریزمخلوط گر غیرفعال الکترواسمتیکی با بار سطحی ناهمگن روی دیواره‌ی تخت و دو بعدی اش به روش عددی مورد بررسی قرار گرفته است. معادلات حاکم شامل یک معادله‌ی لاپلاس برای توزیع میدان الکتریکی خارجی، یک معادله‌ی پواسون برای توزیع میدان الکتریکی درون لایه‌ی دوگانه‌ی الکتریکی، معادله‌ی ارنست – پلانک برای توزیع غلظت یون های مثبت و منفی، معادله‌ی ناویر – استوکس اصلاح شده برای میدان جریان و معادله‌ی حاکم بر غلظت گونه ها برای یک جریان غیرقابل تراکم پایدار به روش حجم محدود حل شده است. اعتبارسنجی کد عددی نوشته شده با مقایسه‌ی نتایج حل جریان الکترواسمتیک ایده آل با زتاپتانسیل ثابت و حل تحلیلی موجود انجام شده است. نتایج نشان می دهد با توزیع مناسب بار های ناهمگن سطحی می توان راندمان اختلاط را تغییر و کنترل نمود. بیشترین راندمان اختلاط مربوط به حالتی است که عدم تقارن در نحوه‌ی چینش بارهای ناهمگن دیواره افزایش یابد. هم‌چنین افزایش شدت بار الکتریکی با فرض ثابت بودن قدرت ریزپمپ الکترواسمتیکی، موجب افزایش راندمان اختلاط می شود.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis Of Mixing Efficiency In An Electroosmotically Micromixer With Heterogeneous Wall Charge Distribution

نویسندگان [English]

  • mohammad mahdi afsari 1
  • seyed ali mirbozorgi 1
  • hamid niazmand 2
1
2
چکیده [English]

In this paper, numerical investigation of a flat passive micromixer with heterogeneous surface properties that the flow through it, is driven by the electroosmotic flow have been presented. The governing equations, which consist of a Laplace equation for the distribution of external electric potential, a Poisson equation for the distribution of electric double layer potential, modified Navier-Stokes equations for the flow field, the Nernst-Planck equation for the distribution of ions concentration have been solved numerically for an incompressible steady flow of a Newtonian fluid using the finite-volume method. The key features of an ideal electro-osmotic flow with uniform zeta potential has been compared with analytical solutions for the ionic concentration and velocity fields for the validation of the numerical scheme. Results show that the arrangement of the heterogeneous surface properties has a significant impact on the efficiency of mixing. Maximum mixing efficiency is related to the condition that the asymmetry in the wall of the heterogeneous arrangement loads increase. The increase in intensity of the electric charge with constant power load of the electroosmotic micropump enhances the efficiency of mixing.

کلیدواژه‌ها [English]

  • Mixing
  • Passive micromixer
  • electroosmotic flow
  • Patchy charge distribution
1. Wang, M., Wang, J.K. , Chen, S.Y. and Pan, N., "Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson–Boltzmann method", J. Colloid Inter f. Sci.
No. 304, pp. 246–253, (2006).
2. Bhattacharyya, S. and Nayak, A.K., "Electroosmotic flow in micro/nanochannels with surface potential heterogeneity: An analysis through the Nernst–Planck model with convection effect", Colloids and Surfaces A: Physicochem. Eng., No. 339, pp. 167–177, (2009).
3. Chang, C.C. and Yang, R-J "Electrokinetic mixing in microfluidic systems", Microfluid Nanofluid, No. 3, pp. 501–525, (2007).
4. Kamholz, A.E., Weigl, B.H., Finlayson, B.A. and Yager P., "Quantitative analysis of molecular interactive in microfluidic channel: the Tsensor", Anal Chem., No. 71, pp. 5340–5347, (1999).
5. Ismagilov, R.F., Stroock, A.D., Kenis P.J.A, Whitesides, G.M. and Stone, H.A., "Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flow in microchannels", Appl. Phys. Lett., No. 76, pp. 2376–2378, (2000).
6. Anderson, J.L., Idol, W.K., "Electroosmosisthrough pores with nonuniformly charged walls", Chem. Eng. Commun., No. 38, pp. 93–106, (1985).
7. Ajdari, A., "Electro-osmosis on inhomogeneous charged surfaces", Phys Rev Lett, No. 75, pp.
755–758, (1995).
8. Stroock, A.D., Dertinger, S., K.W., Ajdari, A., Mezic, I., Stone, H.A. and Whitesides, G.M., "Chaotic mixer for microchannels", Science, No. 295, pp. 647–65, (2002).
9. Fushinobu, K. and Nakata, M., "An experimental and numerical study of a liquid mixing device for Microsystems", Trans ASME J Electronic Packaging, No. 127, pp. 141–146, (2005).
10. Wang, J.K., Wang, M. and Li, Z.X., "Lattice Boltzmann simulations of mixing enhancement by the electroosmotic flow in microchannels", Mod. Phys. Lett. B, No. 19, pp. 1515–1518, (2005).
11. Tang, GH. , Li, Z., Wang, J.K. , He, Y.L. , Tao, W.Q., "Electroosmotic flow mixing in microchannels with the lattice Boltzmann Method", J Appl Phys, No. 100, 094908, (2006).
12. Tang, Z., Hong, S., Djukic, D., Modi, V., West, AC., Yardley, J. and Osgood, R.M., "Electrokinetic flow control for composition modulation in a microchannel", J Micromech Microeng, No. 12,
pp. 870–877, (2002).
13. Mirbozorgi, S.A., Niazmand, H. and Renksizbulut, M., "Electro-osmotic flow in reservoir-connected flat microchannels with non-uniform zeta potential", J. Fluid Engineering, No. 128, pp. 1133-1143, (2006.(
CAPTCHA Image