بررسی تاثیر ناهمگنی استخوان تیبیا بر فرکانس طبیعی به کمک تست مودال و مدل‌سازی اجزا‌‌‌‌ی محدود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران

2 دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران عضو مرکز مطالعات ارتوپدی پیشرفته، دانشکده پزشکی هاروارد، بوستون، ماساچوست،

چکیده

فرکانس‌های طبیعی و شکل مودهای استخوان به طور گسترده در تشخیص بهبود شکستگی استخوان، بازسازی مجدد استخوان، تشخیص پوکی استخوان و برهم‌ کنش ایمپلنت و استخوان مورد استفاده قرار می‌گیرد. این مشخصه‌ها را می‌توان با استفاده از تحلیل‌های عددی و مدل‌سازی اجزای محدود تخمین زده و با تست مودال نمونه‌های آزمایشگاهی اندازه‌گیری و صحه‌گذاری نمود. ناهمگنی استخوان در مدل‌های اجزای محدود بر فرکانس‌ طبیعی آن تاثیر می‌گذارد. در این تحقیق تاثیر ناهمگنی استخوان و روابط چگالی-الاستیسیته بر فرکانس‌ طبیعی استخوان و دقت تخمین آنها بررسی شده است. یک استخوان تیبیا گاوی تهیه و مورد تست مودال قرار گرفت. نتایج تجربی تست مودال با نتایج مدل اجزای محدود سه بعدی ایجاد شده از روی تصاویر سی تی اسکن استخوان، مقایسه گردید. ناهمگنی بر مبنای روابط چگالی-الاستیسیته پیشنهادی به صورت المان به المان (پیوسته) و به صورت ناحیه‌ای بر مبنای یک تلرانس (گسسته) در مدل اعمال شد. مقایسه نتایج مدل‌های ناهمگن با نتایج تجربی نشان می‌دهد که تفاوت بسیار کمی بین فرکانس‌های طبیعی مدل‌های ناهمگن گسسته و پیوسته وجود دارد. بطوریکه برای پنج فرکانس اول، یک مدل ناهمگن گسسته با 20 ناحیه، می‌تواند فرکانس‌های طبیعی را با خطای کمتر از 2درصد و صرف هزینه و زمان کمتر پیش بینی نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Tibia Bone Heterogeneity on Natural Frequency Using Modal Test and Finite Element Modeling

نویسندگان [English]

  • Hamid Dehghan Tarzjani 1
  • Mohammad Ali Nazari 1
  • Mohammad Mahjoob 2
1 Faculty of Mechanical Engineering, University of Tehran, Tehran, Iran
2 professor, Faculty of Mechanical Engineering, University of Tehran,, Tehran,, Iran Member, of Center for Advanced Orthopedic Studies, Harvard Medical School, Boston,, Massachusetts,, USA
چکیده [English]

The natural frequencies and mode shapes of bone are widely used in the diagnosis of bone fracture healing, bone remodeling, osteoporosis diagnosis, and implant-bone interaction. These characteristics can be estimated using numerical analysis and finite element modeling and measured and validated by modal testing of laboratory samples. Bone heterogeneity in finite element models affects its natural frequency. In this research, the effect of bone heterogeneity and density-elasticity relationships on the natural frequency of bone and the accuracy of their estimation have been investigated. A cow tibia bone was prepared and subjected to modal test. The experimental results of the modal test were compared with the results of the 3D finite element model created from the bone CT scan images. Inhomogeneity based on the proposed density-elasticity relationships was applied element by element (continuous) and regionally based on a tolerance (discrete) in the model. Comparing the results of heterogeneous models with experimental results shows that there is very little difference between the natural frequencies of discrete and continuous heterogeneous models. So, for the first five frequencies, a discrete heterogeneous model with 20 regions can predict the natural frequencies with an error of less than 2% with less cost and shorter time.

کلیدواژه‌ها [English]

  • Natural Frequency
  • Mode Shapes
  • Tibia Bone
  • Bone Heterogeneity
  • Modal Test
  • Finite Elements
  1. Kono, Y. Ayukawa, Y. Moriyama, K. Kurata, K. H. Hiroshi Takamatsu and K. Koyano, “The effect of low-magnitude, high-frequency vibration stimuli on the bone healing of rat incisor extraction socket”, Journal of Biomechanical Engineering, vol. 134, no. 9, pp. 091001-091006, (2012).
  2. Uchida, K. Nakata, F. Kawano F., Y. Yonetani, I. Ogasawara, N. Nakai, T. Mae, T. Matsuo, Y. Tachibana, H. Yokoi, H. Yoshikawa, “Vibration acceleration promotes bone formation in rodent models”, PLOS One, vol. 12, no. 3, e0172614, (2017).
  3. Lau, S. Al-Dujaili, A. Guenther, D. Liu, L. Wang and L. You, “Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts”, Bone, vol. 46, no. 6, pp. 1508–1515, (2010).
  4. J. Cairns, M.J. Pearcy, J. Smeathers and C. Adam, “Ability of modal analysis to detect osseointegration of implants in transfemoral amputees: a physical model study”, Medical & Biological Engineering & Computing, vol. 51, pp. 39–47, (2013).
  5. X. Guo, M. Zhang, J.L. Li., Y.M. Zhang, Z.W. Wang and E.C. Teo, “Influence Prediction of Tissue Injury on Frequency Variations of the Lumbar Spine under Vibration”, OMICS A Journal of Integrative Biology, vol. 13, no. 6, pp. 521-526, (2009).
  6. X. Guo, M. Zhang, and Ming Zhang, “Finite Element Modeling and Modal Analysis of the Human Spine Vibration Configuration”, IEEE Transactions on Biomedical Engineering, vol. 58, no. 10, pp. 2987-2990, (2011).
  7. Verdenelli, R. Rossetti, P. Chiariotti, M. Martarelli and L. Scalise, “Experimental and numerical dynamic characterization of a human tibia”, Journal of Physics: Conference Series, 1149 (2018) 012029, AIVELA, (2018).
  8. L. Lin, S.Y. Lee, L.Y. Lee, W.T. Chiu, C.T. Lin and H.M. Huang, “Vibrational analysis of mandible trauma: experimental and numerical approaches”, Medical and Biological Engineering and Computing, vol. 44, no. 9, pp. 785–792, (2006).
  9. C. Pastrava, J. Devos, G. Van der Perrea and S.V.N. Jaecques, “A finite element analysis of the vibrational behaviour of the intra-operatively manufactured prosthesis–femur system”, Medical Engineering & Physics, vol. 31, no. 4, pp. 489–494, (2009).
  10. C. Hobatho, R. Darmana, P. Pastor, J. Barrau, S. Laroze and J. Morucci, “Development of a three-dimensional finite element model of a human tibia using experimental modal analysis”, Journal of Biomechanics, vol. 24, no. 6, pp. 371-383, (1991).
  11. Bediz, H. Nevzat Özgüven and F. Korkusuz, “Measuring Structural Dynamic Properties of Human Tibia by Modal Testing”, Proceedings of the 26th International Modal Analysis Conference, Orlando, Florida, February 4-7, (2008).
  12. R. Taylor, E. Roland, H. Ploeg, D. Hertig, R. Klabunde, M.D. Warner and S.E. Clift, “Determination of Orthotropic Bone Elastic Constants Using FEA and Modal Analysis”, Journal of Biomechanics, vol. 35, no. 6, pp. 767–773, (2002).
  13. Scholz, F. Hoffmann, S. von Sachsen, W. G. Drossel, C. Klöhn and C. Voigt, “Validation of density–elasticity relationships for finite element modeling of human pelvic bone by modal analysis”, Journal of Biomechanics, vol. 46, no. 15, pp. 2667-2673, (2013).
  14. F. Morgan, H.H. Bayraktar and T.M. Keaveny, “Trabecular bone modulus–density relationships depend on anatomic site”, Journal of Biomechanics, vol. 36, no. 7, pp. 897-904, (2003).
  15. Werner, M. Quickert and H. Kunze and C. Voigt, “Applying modal Analysis for comparing various FE models of human pelvic bone”, 16th International Congress on Sound and Vibration, Kraków, Poland, 5–9 July, (2009).
  16. Henys and L. Capek, “Computational modal analysis of a composite pelvic bone: convergence and validation studies”, Computer Methods in Biomechanics and Biomedical Engineering, vol. 22, no. 9, pp. 916-924, (2019).
  17. O. Moghaddam, M.J. Mahjoob and A. Nazarian, “Assigning Material Properties to Finite Element Models of Bone: A New Approach Based on Dynamic Behavior”, The 7th International Conference on Computational Methods, University of California at Berkeley, 1-4 August, (2016).
  18. J. Ewins, Modal Testing: Theory, Practice and Application, second edition, Wiley, pp. 303- 320, 2000.
  19. J. McBroom, W.C. Hayes, W.T. Edwards, R.P. Goldberg, and A.A.D. White, “Prediction of vertebral body compressive fracture using quantitative computed tomography”, Journal of Bone and Joint Surgery American, vol. 67, no. 8, pp. 1206–1214, (1985).
  20. Y. Rho, M.C. Hobatho and R.B. Ashman, “Relations of mechanical properties to density and CT numbers in human bone”, Medical Engineering & Physics, vol. 17, no. 5, pp. 347-355, (1995).
  21. Helgason, E. Perilli, E. Schileo, F. Taddei, S. Brynjolfsson and M. Viceconti, “Mathematical relationships between bone density and mechanical properties: A literature review”, Clinical Biomechanics, vol. 23, no. 2, pp. 135–146, (2008).
  22. R. Carter and W.C. Hayes, “The compressive behavior of bone as a two-phase porous structure”, The Journal of Bone & Joint Surgery, vol. 59, no. 7, pp. 954-962, (1977).
  23. S. Keller, “Predicting the compressive mechanical behavior of bone”, Journal of Biomechanics, vol. 27, no. 9, pp. 1159-1168, (1994).
  24. Zhang, D.D. Arola and J.A. Rouland, “Evaluating the elastic modulus of bone using electronic speckle pattern interferometry”, Experimental Techniques, vol. 25, no. 5, pp. 32-34, (2001).
  25. D.M. Jones, M.A. Price and R.T. Berg, “The Density of Bovine Limb Bones”, Canadian Journal of Animal Science, vol. 58, no.1, pp. 105-106, (1978).
CAPTCHA Image