بررسی اثر مکان شعله بر دمای شعله در احتراق ابر ذرات جریان پیش‌مخلوط متقابل

نوع مقاله : Short Paper

نویسندگان

دانشگاه علم و صنعت ایران

چکیده

در این بررسی تحلیلی، انتشار شعله میان ابر ذرات یک جریان متقابل پیش مخلوط همگن دو جزئی، متشکل از ذرات سوخت و هوا مطالعه خواهد شد. این مطالعه در چارچوب یک مدل نفوذی حرارتی با فرض عدد لوییس واحد و نرخ کرنش ثابت است. پروفیل سرعت تابعی از یک متغیر مانند x فرض شده است. ساختار شعله به سه ناحیۀ پیش گرم-تبخیر، نازک حدی واکنش و پس از واکنش تقسیم می شود. عدد زلدویچ بزرگ انتخاب شده و از اتلاف های حرارتی صرف نظر شده است. این آنالیز تغییرات دمای شعله براساس مکان شعله را نتیجه می‌دهد. پروفیل دما برای نرخ کرنش های متفاوت در جریان متقابل ابر ذرات نیز موجود است که این نتایج با دیدگاه های تجربی و عددی احتراق ذرات موافقت دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Flame Location Effect on Flame Temperature in Premixed Counterflow Combustion of Particle-Cloud

نویسندگان [English]

  • M. Bidabadi
  • A. Esmaeilnejad
  • Y. Pourmohammad
Iran University of Science and Technology
چکیده [English]

The premixed counterflow flames propagation in combustion of mixture which is a uniform mixture of fuel particles and air is analytically studied. This analysis framework is based on thermal-diffusion model with assumption that the Lewis number is unit and the strain rate is constant. Velocity profile is assumed as a function of one variable like x. The structure of the flame is presumed to consist of three zones: preheat-vaporization zone, reaction zone and convection zone. The Zeldovich number, based on the gas-phase oxidation of the gaseous fuel is large, and heat loss is neglected. This analysis leads to variation of the flame temperature based on the flame location. Temperature profiles for different strain rates are also available, which is congruent with experimental and numerical standpoints of particles combustion.

کلیدواژه‌ها [English]

  • Particle-Cloud
  • Counterflow
  • Combustion
  • Flame Location
  • Flame Temperature
1. Buckmaster, J.D., "The effects of radiation on stretched flames", Combust. Theory Model., Vol. 1, pp. 1–11, (1997).
2. Ju, Y., "Flame bifurcations and flammable regions of radiative counterflow premixed flames with general Lewis numbers", Combust. Flame, Vol.113, pp. 603–614, (1998).
3. Guo, H., Ju, Y., Maruta, K., Niioka, T. and Liu, F., "Radiation extinction limit of counterflow premixed lean methane–air flames", Combust. Flame, Vol. 109, pp. 639–646, (1997).
4. Ju, Y., Xue, Y., "Extinction and flame bifurcations of stretched dimethyl ether premixed flames", Proc. Combust. Inst., Vol. 30, pp. 295–301, (2005).
5. Ju, Y., Liu, F. and Guo, H., "Effects of the Lewis number and radiative heat-loss on the bifurcation and extinction of CH4/O2-N2-He flames", J. Fluid Mechan., Vol. 379, pp. 165–190, (1999).
6. Liu, J.B. and Ronney, P.D., "Premixed edge-flames in spatially varying straining flows", Combust. Sci. Technol., Vol. 144, pp. 21–46, (1999).
7. Daou, J., Matalon, M. and Li˜n´an, A., "Premixed edge flames under transverse enthalpy gradients", Combust. Flame, Vol. 121, pp. 107–121, (2000).
8. Daou, J. and Li˜n´an, A., "Ignition and extinction fronts in counterflowing premixed reactive gases", Combust. Flame, Vol. 118, pp. 479–488, (1999).
9. Daou, R., Daou, J. and Dold, J., "Effect of heat-loss on flame-edges in a premixed counterflow", combust. Theory Model., Vol. 7, pp. 221-242, (2003).
10. Seshadri, K., Berlad, A. and Vtangirala, L., "The Structure of Premixed Particle-Cloud Flames", Combustion and Flame, Vol. 89, pp. 333-342, (1992).
11. Han, O., Yashima, S., Matsuda, M., Matsui, T., Miyake, H. and Ogawa, A.T., "Behavior of flame propagating through lycopodium dust clouds in a vertical duct", J. Loss Prev. Process Ind., Vol. 13 (6), pp. 449–457, (2000).
12. Han, O., Yashima, S., Matsuda, M., Matsui, T., Miyake, H. and Ogawa, A.T., "A study of flame propagation mechanisms in lycopodium dust clouds based on dust particles’ behavior", Journal of Loss Prevention in the Process Industries, Vol. 14, pp. 153–160, (2001).
13. Bidabadi, M. and Rahbari, A., "Modeling Combustion of Lycopodium Particles by Considering the Temperature Difference between the Gas and the Particles", Combust. Explosion and Shock Waves, Vol. 45, pp. 278–285, (2009).
14. Daou, J.," Strained premixed flames: Effect of heat-loss, preferential diffusion and reversibility of the reaction", Combustion Theory and Modelling, Vol. 15, pp. 437–454, (2011).
15. Cho, S.J. and Takita, K., "Numerical study of premixed twin edge flames in a counterflow field", Combust. Flame, Vol. 144, pp. 370–385, (2006).
16. Buckmaster, J., "Edge-flames", Energy and Combustion Science, 28, pp. 435–475, (2002).
17. Joulin, G. and Deshaies, B., "On radiation-affected flame propagation in gaseous mixtures seeded with inert particles", Combust. Sci. Tech., Vol. 47, pp. 299-315, (1986).
18. Joulin, A. and Eudier, M.," The radiation-dominated propagation and extinction of slow,particle-laden gaseous flames", Twenty-Second Symposium(International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1579-1585, (1988).
19. El-Mahallaway, F. and El-Din Habik, S., "Fundamentals and Technology of Combustion", First Edition, Elsevier, Elsevier Science Ltd, the Boulevard, Langford Lane Kidlington. Oxford OX5 IGB, UK, (2002).
CAPTCHA Image