آنالیز پایداری دینامیکی ورق میندلین‌ مستطیلی در تماس با سیال تحت عبور جسم‌های صلب نوسان کننده

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار دانشکده مهندسی مکانیک، دانشگاه صنعتی جندی شاپور، دزفول، ایران.

چکیده

در این مقاله، پایداری دینامیکی یک ورق مستطیلی نسبتا ضخیم شناور بر روی یک سیال ساکن تحت حرکت متناوب جسم‌های صلب نوسان کننده‌ متحرک مطالعه شده است. هر دو انتهای جسم صلب از طریق یک سیستم تعلیق به یک چرخ متصل شده‌اند. اثر نیروی سیال بر روی ورق با استفاده از روش جرم افزوده مدل شده است. با استفاده از روش مودهای فرضی، مبتنی بر تئوری ورق میندلین معادلات حاکم استخراج شده‌اند. تئوری فلاکه به عنوان یک روش عددی برای تعیین نواحی پایدار و ناپایدار در صفحه پارامترها بکارگرفته می‌شود. با درنظرگرفتن مدل جسم نقطه‌ای متحرک، اثر مدل‌سازی جسم متحرک بر روی نتایج آنالیز پایداری نیز بررسی شده است. نتایج نشان می‌دهند که تماس ورق با سیال، شرایط مرزی ورق، ضخامت ورق، سختی و میرایی سیستم تعلیق، نسبت جرم چرخ به جرم کل جسم صلب، طول جسم صلب و روش مدل‌سازی بر روی نواحی پایدار و ناپایدار سیستم کاملا موثر هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dynamic Stability Analysis of Rectangular Mindlin Plate in Contact with Fluid under Passage of Oscillating Rigid Bodies

نویسنده [English]

  • Mehran Ghomeshi Bozorg
Mechanical Engineering Department, Mechanical Engineering Faculty, Jundi shapur University of Technology, Dezful, Iran
چکیده [English]

In this paper, the dynamic stability of a moderately thick rectangular plate floating on stationary fluid under the periodic passage of oscillating rigid bodies is studied. Each of the two ends of a rigid body is connected to a wheel through a suspension system. The fluid loading effect on the plate is modelled using the method of added mass. Using the assumed-mode method, the governing equations are derived based on the Mindlin plate theory. The Floquet theory is employed as a numerical method to obtain stable and unstable zones of the parameters plane. Considering the point moving object model, the effect of moving object modelling on the stability analysis results is also investigated. The results indicate that contact of the plate with the fluid, the plate boundary conditions, the plate’s thickness, the stiffness and damping of the suspension system, the mass ratio of the wheels to the whole rigid body, the rigid body’s length and the moving object modelling method are very effective in domains stability and instability of the system.

کلیدواژه‌ها [English]

  • Mindlin Plate
  • Oscillating Rigid Body
  • Stability Analysis
  • Floquet Theory
[1] Y. B. Yang, J. D. Yau, and Y. S. Wu, Vehicle Bridge Interaction Dynamics: With Applications to High Speed Railways, World Scientific Company, 2004.
[2] I. Gerdemeli, I. Esen, and D. Ozer, “Dynamic response of an overhead crane beam due to a moving mass using moving finite element approximation,” Key Engineering Materials, vol. 450, Pp. 99-102, 2010.
[3] T. N. Shiau, and K. H. Huang, F. C. Wang, and W. C. Hsu, “Dynamic response of a rotating multi-span shaft with general boundary conditions subjected to a moving load,” Journal of Sound and Vibration, vol. 323, no. 3-5, Pp. 1045-1060, 2009.
[4] L. Fryba, Vibration of Solids and Structures under Moving Loads, Thomas Telford, 1999.
[5] A. Nikkhoo, and F. R. Rofooei, “Parametric study of the dynamic response thin rectangular plates traversed by a moving mass,” Journal Achta Mechanica, vol. 223, no. 1, Pp. 15-27, 2011.
[6] T. Ghazvini, A. Nikkhoo, H. Allahyari, and M. Zapulli, “Dynamic response analysis of thin rectangular plate of varying thickness to traveling inertia loads,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 38, Pp. 403-411, 2015.
[7] I. Essen, “A New finite element for transverse vibration of rectangular thin plates under a moving mass,” Finite Elements in Analysis and Design, vol. 66, Pp. 26-35, 2013.
[8] Q. Song, J. Shi, Z. Liu, and Y. Wan, “Dynamic analysis of rectangular thin plates of arbitrary boundary conditions under moving loads,” International Journal of Mechanical Sciences, vol. 117, Pp. 16-29, 2016.
[9] H. Kashani Rad, M. Ghalehnovi, and H. Shariatmadar, “Boundary characteristic orthogonal polynomials method in the vibration analysis of multi-span plates acting upon a moving mass,” Heliyon, vol. 5, no. 6, 2019.
[10] A. H. Karimi, S. Alahdadi, and M. Ghayour, “Dynamic analysis of a rectangular plate subjected to a mass moving with variable velocity on a predefined path or an arbitrary one,” Thin–Walled Structures, vol. 160, Pp. 107340, 2021.
[11] N. D. Beskou, E. V. Muho, and J. Qian, “Dynamic analysis of an elastic plate on a cross-anisotropic elastic half-space under a rectangular moving load,” Acta Mechanica, vol. 231, Pp. 4735-4759, 2020.
[12] S. Seifoori, A. Mahdian Parrany and S. Darvishinia, “Experimental studies on the dynamic response of thin rectangular plates subjected to moving mass,” Journal of Vibration and Control, vol. 27, no. 5-6, Pp. 685-697, 2021.
[13] F. G. Canales, and J. L. Mantari, “Vibrational behavior of isotropic plate structures in contact with a bounded fluid via unified formulation,” Chinese Journal of Aeronautics, vol. 32, no. 4, Pp. 155-171, 2019.
[14] K. Khorshidi, F. Akbari, and H. Ghadirian, “Experimental and analytical modal studies of vibrating rectangular plates in contact with a bounded fluid,” Ocean Engineering, vol. 140, Pp. 146-154, 2017.
[15] S. A. Bochkarev, A. O. Kamenskikh, and S. V. Lekomtsev, “Experimental investigation of natural and harmonic vibrations of plates interacting with air and fluid,” Ocean Engineering, vol. 206, Pp. 107341, 2020.
[16] H. C. Li, L. L. Ke, Z. M. Wu, and J. Yang, “Free vibration of FGM mindlin plates submerged in fluid,” Engineering Structures, vol. 259, Pp. 114144, 2022.
[17] C. Y. Liao, and C. C. Ma, “Vibration characteristics of rectangular plate incompressible inviscid fluid,” Journal of Sound and Vibration, vol. 362, Pp. 228-251, 2016.
[18] Y. Kerboua, A. A. Lakis, M. Thomas, and L. Marcouiller,  “Vibration analysis of rectangular plates coupled with fluid,” Applied Mathematical Modelling, vol. 32, no. 12, Pp. 2570-2586, 2008.
[19] S. Soni, N. K. Jain, P. V. Joshi, “Vibration analysis of partially cracked plate submerged in fluid,” Journal of Sound and Vibration, vol. 412, Pp. 28-57, 2018.
[20] S. Yousefzadeh, A. Akbari, and M. Najafi, “Hydro-elastic vibration analysis of functionally graded rectangular plate in contact with stationary fluid,” European Journal of Computational Mechanics, vol. 27, no. 3, Pp. 229-246, 2018.
[21] S. Yousefzadeh, A. Akbari, and M. Najafi, “Dynamic response of FG rectangular plate in contact with stationary fluid under moving load,” Journal of Science and Technology of Composites, vol. 6, no. 2, Pp. 213-224, 2019. (In Persian)
[22] H. D. Nelson, and R. A. Conover, “Dynamic stability of a beam carrying moving masses,” Applied Mechanics, vol. 38, no. 4, Pp. 1003-1006, 1971.
[23] O. J. Aldraiham, and A. Baz, “Dynamic stability of stepped beams under moving loads,” Journal of Sound and Vibration, vol. 250, no. 5, Pp. 835–848, 2002.
[24] S. Mackertich, “Dynamic stability of a beam excited by a sequence of moving mass particles,” Acoustical Society of America, vol. 115, no. 4, Pp. 1416-1419, 2004.
[25] G. V. Rao, “Linear dynamics of an elastic beam under moving loads,” Journal of Vibration and Acoustics k, vol. 122, no. 3, Pp. 281–289, 2000.
[26] M. Ebrahimzadeh Hassanabadi, K. A. Attari, A. Nikkhoo, and S. Mariani, “Resonance of a rectangular plate influenced by sequential moving masses,” Coupled Systems Mechanics, vol. 5, no. 1, Pp. 87–100, 2016.
[27] F. R. Rofooei, and A. Nikkhoo, Attapangittya, “Application of active piezoelectric patches in controlling the dynamic response of a thin rectangular plate under a moving mass,” International Journal of Solids and Structures, vol. 46, no. 11-12, Pp. 2429–2443, 2009.
[28] A. Nikkhoo, M. Ebrahimzadeh Hassanabadi, S. E. Azam, and J. V. Amiri, “Vibration of a thin rectangular plate subjected to series of moving inertial loads,” Mechanical Research Communication, vol. 55, Pp. 105-113, 2014.
[29] E. Torkan, M. Pirmoradian, and M. Hashemian, “Stability analysis of transverse vibrations of rectangular plate under periodic passage of moving masses,” Journal of Mechanical Engineering and Vibration, vol. 8, no. 3, Pp. 18–26, 2017. (In Persian)
[30] E. Torkan, M. Pirmoradian, and M. Hashemian, “Instability inspection of parametric vibrating rectangular mindlin plates lying on winkler foundations under periodic loading of moving masses,” Acta Mechanica Sinica, vol. 35, no. 1, Pp. 242–263, 2019.
[31] M. Pirmoradian, H. Karimpour, “Nonlinear effects on parametric resonances of a beam subjected to periodic mass transition,” Modares Mechanical Engineering, vol. 17, no. 1, Pp. 284-292, 2017. (In Persian)
[32] J. V. Amiri, A. Nikkhoo, M. R. Davoodi, and M. Ebrahimzadeh Hassanabadi, “Vibration analysis of a mindlin elastic plate under a moving mass excitation by eigenfunction expansion method,” Thin-Walled Structures, vol. 62, Pp. 53-64, 2013.
[33] M. Hashemian, M. Falsafioon, M. Pirmoradian, and D. Toghraie, “Nonlocal dynamic stability analysis of a timoshenko nanobeam subjected to a sequence of moving nanoparticles considering surface effects,” Mechanics of Materials, vol. 148, Pp. 103452, 2020.
[34] M. Pirmoradian, E. Torkan, M. Hashemian, and D. Toghraie, “Out‑of‑plane dynamic Instability of Nonlocal Shear Deformable Nanoplates Made of Polyvinylidene Fluoride Materials subjected to electromechanical forces,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 43, no. 145, Pp. 1-23, 2021.
[35] H. D᾿Angelo, Linear Time-Varying System: Analysis and Synthesis, Allyn and Bacon, 1970.
 
 
CAPTCHA Image