مدل سازی قطرۀ پایدار معلق در بخار به کمک روش شبکۀ بولتزمان

نوع مقاله : مقاله کوتاه

نویسنده

دانشگاه حکیم سبزواری

چکیده

پس از تعریف حالت تعادل براساس تابع انرژی آزاد مناسب و تلفیق آن با الگوریتم شبکۀ بولتزمان، سیستم دوفازی بخار – مایع مدل سازی شده است که رفتار آن از معادلات پیوستگی و ناویر – استوکس پیروی می کند. به کمک مدل توسعه یافته ابتدا سطح تماس مسطح (Planar Interface) حل شده و نتایج با نتایج تئوری مقایسه گردیده است. سپس قطرۀ معلق در فضای بخار تحت بررسی قرار گرفته و نتایج به دست آمده برای قطرۀ پایدار با نتایج تئوری مقایسه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling of a Stable Droplet Suspended in Vapor by Lattice Boltzmann Method

نویسنده [English]

  • Ehsan Amiri Rad
Hakim Sabzevari University
چکیده [English]

In this paper, by defining an appropriate free energy function and integrate that with a Lattice Boltzmann algorithm; a two-phase system of vapor and liquid is modeled where the flow is governed by the continuity and Navier-Stokes equations. Using the developed model, initially a planar interface is modeled and outputs are compared with theoretical results. Then a droplet which is suspended in bulk vapor is investigated and equilibrium conditions of the droplet are compared with theoretical results.

کلیدواژه‌ها [English]

  • Lattice Boltzmann
  • Free Energy
  • Two Phase System
  • Stable Droplet
1. McGaughey, A.J.H. and Ward, C.A., "Droplet stability in a finite system: Consideration of the solid–vapor interface", Journal of applied physics, Vol. 93, No. 6, pp. 3619-3626, (2003).
2. Toxvaerd, S., "Molecular-dynamics simulation of homogeneous nucleation in the vapor phase", J. Chem. Phys., Vol. 115, pp. 8913-8920, (2001).
3. Rao, M. and Berne, B.J., "Nucleation in finite systems: Theory and computer simulation" Astrophysics and Space Science, Vol. 65, No. 1, pp. 39-46, (1979).
4. Reiss, H. and Koper, G.J.M., "The Kelvin Relation: Stability, Fluctuation, and Factors Involved in Measurement", J. Phys. Chem., Vol. 99, No. 19, pp. 7837–7844, (1995).
5. He, X. and Doolen G.D., "Thermodynamic Foundations of Kinetic Theory and Lattice Boltzmann Models for Multiphase Flows", J. Stat. Phys., No. 107, pp. 309-328, (2002).
6. Zhang, J., Li, B. and Kwok, D.Y., "Mean-Field Free-Energy Approach to the Lattice Boltzmann Method for Liquid-Vapor and Solid-Fluid Interfaces", Phys. Rev. E, Vol. 69, 032602, (2004).
7. Lee, T. and Lin C.L., "Pressure evolution lattice-Boltzmann-equation method for two-phase flow with phase change", Phys Rev E, Vol. 67, 056703, (2003).
8. Wolf-Gladrow, D.A., "Lattice-gas Cellular Automata and Lattice Boltzmann Models", Springer, Berlin, (2000).
9. Holdych, D. J., Rovas, D., Georgiadis, J. G. and Buckius, R. O., "An improved hydrodynamics formulation for multiphase flow lattice-Boltzmann models", Int. J. Mod. Phys. C 9, pp. 1393-1404 (1998)
10. Huang, H., Wang, L. and Lu, X., "Evaluation of three lattice Boltzmann models for multiphase flows in porous media", Computers and Mathematics with Applications, Vol. 61, pp. 3606–3617, (2011).
11. Amiri Rad, E., "Control of droplet collapse during coarsening process by imposing shear flow: a lattice Boltzmann simulation", Meccanica, Vol. 50, No. 4, pp. 995-1001, (2015).
12. Amiri Rad, E., "Coalescence of two at-rest equal-sized drops in static vapor of the same material: A lattice Boltzmann approach", Journal of Mechanical Science and Technology, Vol. 28, No. 9,
pp. 3597-3603, (2014).
13. Gunstensen, A.K., Rothman, D.H., Zaleski, S. and Zanetti, G., "Lattice Boltzmann model of immiscible fluids", Phys. Rev. A, Vol. 43, pp. 4320–4327, (1991).
14. Shan, X.W. and Chen H.D., "Lattice Boltzmann model for simulating flows with multiple phases and components", Phys. Rev. E, Vol. 47, pp. 1815–1819, (1993).
15. Shan, X.W. and Chen H.D.,"Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation", Phys. Rev. E, Vol. 49, pp. 2941-2948, (1994).
16. Swift, M.R., Osborn, W.R. and Yeomans, J.M., "Lattice Boltzmann simulation of nonideal fluids", Phys. Rev. Lett., Vol. 75, pp. 830–833, (1995).
17. Swift, M.R., Orlandini, E., Osborn, W.R. and Yeomans, J.M., "Lattice Boltzmann simulations of liquid–gas and binary fluid systems", Phys. Rev. E, Vol. 54, pp. 5041–5052, (1996).
18. Landau, L. D. and Lifshitz, E. M., "Statistical physics", Pergamon Press, (1958).
19. Jamet, D., Lebaigue, O., Coutris, N. and Delhaye, J.M.,"The second gradient method for the direct numerical simulation of liquid–vapor flows with phase change", Journal of Computational Physics, Vol. 169, pp. 624–651, (2001).
20. Evans, R., "The nature of the liquid-vapour interface and other topics in the statistical mechanics of non - uniform, classical fluids", Adv. Phys., Vol. 28, pp. 143-200, (1979).
21. Amiri Rad, E., "Investigation the effects of shear rate on stationary droplets coalescence by lattice Boltzmann", Meccanica, Vol. 9, No. 6, pp. 1457-1467, (2014).
22. Khatavkar, V.V., Anderson, P.D. and Meijer, H.E.H., "On scaling of diffuse–interface models", Chemical Engineering Science, Vol. 61, pp. 2364 – 2378, (2006).
CAPTCHA Image