بکارگیری روش طیفی زمانی تطبیقی برای تحلیل جریان تراکم‌پذیر غیرلزج حول یک ایرفویل نوسان‌کننده پیچشی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

چکیده

برای یک مسئله متناوب زمانمند مانند جریان حول ایرفویل نوسان‌کننده پیچشی می‌توان از روش طیفی زمانی که یک روش طیفی بر مبنای سری فوریه یا سرعت همگرایی مناسب می‌باشد، بهره جست. عیب روش طیفی زمانی این است که در کل ناحیه محاسباتی تعداد فواصل زمانی در یک دوره تناوب ثابت بوده که این مسئله به نحو غیرضروری باعث بالا رفتن میزان حافظه کامپیوتری و زمان پردازش (متغیرهای وابسته) می‌شود. با استفاده از روش طیفی زمانی تطبیقی می‌توان با توزیع بهینه نقاط زمانی (متغیر مستقل) در ناحیه محاسباتی - به تناسب نرخ زمانمند بودن جریان - این ضعف روش طیفی زمانی را از بین برد. در تحقیق حاضر روش طیفی زمانی تطبیقی به یک حلگر جریان غیرلزج اضافه گردید. نتایج حاصل از این روش با نتایج روش طیفی زمانی استاندارد (غیرتطبیقی) و داده‌های تجربی مقایسه گردید. همچنین دو مؤلفه حافظه کامپیوتری و زمان پردازش مورد بررسی و مطالعه قرار گرفت. نتایج حاصله برای سه حالت Case1، Case2 و Case5 به ترتیب با اعداد ماخ 0.6، 0.6 و 0.755 ایرفویل نوسان‌کننده NACA0012  نشان داد که ضمن داشتن دقت قابل قبول حل، میزان حافظه کامپیوتری نسبت به روش طیفی زمانی استاندارد، به نحو قابل توجهی کاهش می‌یابد. زمان پردازش کامپیوتری نیز برای Case2 و Case5 برای 4 فاصله زمانی به ترتیب به میزان 21 و 24 درصد و برای Case1 در چهار وضعیت 4، 8، 10 و 12 فاصله زمانی به ترتیب به اندازه 16، 38، 31 و 29 درصد کاهش یافته است.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Adaptive Time Spectral Method to Analyze Inviscid Compressible Flow Around a Pitching Airfoil

نویسندگان [English]

  • Samad Ghasemi
  • Majid Malek Jafarian
Faculty of Mechanical Engineering، Birjand University، Birjand، Iran
چکیده [English]

A pitching airfoil, the time-spectral method can be used, which is a Fourier series-based spectral method with a suitable convergence speed. The disadvantage of the time spectral method is that in the entire computational domain, the number of time intervals is constant, which unnecessarily increasing the amount of computer memory and CPU time (The dependent variables). By using the adaptive time spectral method, this weakness of the time spectral method can be eliminated by the optimal distribution of time intervals (independent variable) in the computational domain (proportional to the flow gradient). In the present research, the adaptive time spectral method was added to an inviscid flow solver. The results of this method were compared with the results of the standard (non-adaptive) time spectral method and experimental data. Also, two components of computer memory and CPU time were studied. The results obtained for the three cases (Case1, Case2, and Case5) with Mach numbers 0.6, 0.6, and 0.755 respectively of the NACA0012 pitching airfoil showed that while having an acceptable solution accuracy, the amount of computer memory and CPU time is significantly reduced compared to the standard time spectral method. The CPU time for Case2 and Case5 for 4-time intervals has been reduced by 21 and 24 percent, respectively. And for Case1 for 4, 8, 1,0 and 12-time intervals, it has been reduced by 16, 38, ,31 and 29 percent respectively.

کلیدواژه‌ها [English]

  • Time Periodic Flow
  • Time Spectral Method
  • Adaptive Time Spectral Method
  • Inviscid Compressible Flow
  • Pitching Airfoil
  1.  C. Hall, J. P. Thomas, and W. S. Clark, “Computation of unsteady nonlinear flows in cascades using a harmonic balance technique,” AIAA J., vol. 40, no. 5, pp. 879–886, 2002.
  2. M. Murman, and M. Field, “A Reduced-Frequency Approach for Calculating Dynamic Derivatives,” AIAA Journal, vol. 45, no. 6, pp. 1161-1168, 2007.
  3. Gopinath, A. Jameson, “Application of the time spectral method to periodic unsteady vortex shedding,” In 44th AIAA Aerospace Sciences Meeting and Exhibit, p. 449, (2006).
  4. Choi, K. Lee, M. M. Potsdam, and J. J. Alonso, “Helicopter rotor design using a time-spectral and adjoint- based method,” Journal of Aircraft, vol. 51, no. 2, pp. 412-423, 2014.
  5. Mundis, and D. J. Mavriplis, “An efficient flexible GMRES solver for the fully-coupled time-spectral aeroelastic system,” In 52nd Aerospace Sciences Meeting, p. 1427, (2014).
  6. J. Mavriplis, and Z. Yang, “Time spectral method for periodic and quasi-periodic unsteady computations on unstructured meshes,” Mathematical Modelling of Natural Phenomena, vol. 6, no. 3, pp. 213-236, 2011.
  7. Yang, D. Mavriplis, and J. Sitaraman, “Prediction of Helicopter Maneuver Loads Using BDF/Time Spectral Method on Unstructured Meshes,” In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 1122, (2011).
  8. J. Mavriplis, Z. Yang, and N. Mundis, “Extensions of time spectral methods for practical rotorcraft problems,” In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 423, January, (2012).
  9. Leffell, An overset time-spectral method for relative motion, Stanford University, 2014.
  10. Zhan, J. Xiong, F. Liu, and Z. Xiao, “Fully implicit Chebyshev time-spectral method for general unsteady flows,” AIAA Journal, vol. 56, no. 11, pp. 4474–4486, 2018.
  11. Djeddi, and K. Ekici, “An Adaptive Mesh Redistribution Approach for Time-Spectral/Harmonic-Balance Flow Solvers,” In 2018 Fluid Dynamics Conference, p. 3245, (2018).
  12. Plante, and E. Laurendeau, “Simulation of transonic buffet using a time-spectral method,” AIAA Journal, vol. 57, no. 3, pp. 1275–1287, 2019.
  13. He, Aerodynamic Shape Optimization using a Time-Spectral Approach for Limit Cycle Oscillation Prediction, PhD diss., 2021.
  14. C. Maple, Adaptive harmonic balance method for unsteady, nonlinear, one-dimensional periodic flows, Ph.D. thesis, Air Force Institute of Technology, 2002.
  15. Maple, P. I. King, and M. E. Oxley, “Adaptive harmonic balance solutions to Euler’s equation,” AIAA Journal, vol. 41, no. 9, pp. 1705–1714, 2003.
  16. Mosahebi, and S. Nadarajah, “An adaptive non-linear frequency domain method for viscous flows,” Computers & Fluids, vol. 75, pp. 140-154, January, 2013.
  17. H. Landon, NACA 0012 oscillatory and transient pitching, AGARD Report 702, January, 1982.
  18. S. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral methods for time-dependent problems, vol. 21, Cambridge University Press, 2007.
  19. K. Gopinath, Efficient Fourier-based algorithms for time-periodic unsteady problems, Stanford University, 2007.
  20. Mosahebi, “An Implicit Adaptive Non-Linear Frequency Domain Method for Periodic Viscous Flows on Deformable Grids,” McGill University, 2012.
  21. Jameson, W. Schmidt, and E. Turkel, “Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes”, 14th Fluid and Plasma Dynamic Conference, p. 1259, (1981).
  22. Ly, Numerical Schemes for Unsteady Transonic Flow Calculation, Ph.D. Thesis, Melbourne Victoria Australia, September, 2000.

 

 

CAPTCHA Image