Nonlinear Forced Vibration of Functionally Graded Magneto-Electro-Elastic Rectangular Plate based on the Third Order Shear Deformation Theory

R. Mantashloo A. Shooshtari

Abstract In this paper, nonlinear vibration of the functionally graded rectangular plates made of piezoelectric BaTiO$_3$ and magnetostrictive CoFe$_2$O$_4$, which simply supported boundary condition has been investigated. It is assumed that the composition is varied from the bottom surfaces to top surface, i.e., the top surface of the plate is piezoelectric-rich, whereas the bottom surface is magnetostrictive-rich. In addition, material properties are graded along the thickness according to volume fraction power-law distribution. Based on the Reddy's third-order shear deformation plate theory, the governing equations of motion, whereas Maxwell equations for electrostatics and magnetostatics are used to model the electric and magnetic behavior. Then, the nonlinear partial differential equations of motion are transformed into five coupled nonlinear ordinary differential equations by using the Galerkin method. Afterwards, the obtained coupled ordinary differential equations are reduced to a single nonlinear differential equation which include nonlinear inertia and stiffness terms with quadratic and cubic nonlinear terms. A perturbation method is used to solve the equation of motion analytically. The results for natural frequency are compared with the available results for isotropic, laminated and piezo-laminated plates and good agreement is found between the results of present study with the results of previously published papers. In the forced vibration, primary, super-harmonic resonances are studied and the frequency response equation has been found. Because of the importance of the primary resonance, the stability of the steady-state motion is investigated for the primary resonance, The applied external force is assumed to be harmonic in time with a constant amplitude.

Key Words Functionally graded smart plate, Third order shear deformation theory, Gauss’s laws, Perturbation method, Force vibration

DOI: 10.22067/fum-mech.v30i2.66477
مقدمه
مواد مصرع نابعی (FGM) نوع جدیدی از مواد مرکب نامه‌گان ساختمان شده از مواد با فاصله‌های متفاوت هستند.
نمونه‌ای از ساختار کلی این مواد در شکل 1 نشان داده شده است که در آن ذرات کروی یا تقریباً کروی در درون ماتریس‌های همسانگرد جاسازی شده است.
در این گونه از مواد مرکب، مواد میکروسکوپی با فاز مختلف تغییرات با تبعیضی دارند و امکان بهبود تغییرات تنش در این مواد مرکب با تغییر مناسب پروفیل مواد ساختاری که از یک گروه برجسته این مواد ایجاد و دارد. مواد مدرج نابعی این گونه توصیف شده است و مواد زمینی به صورت پیوسته و به صورت نه به صورت گسترشی آنها می‌گردد.
مواد مدرج نابعی مگنتو-الکترو-استیک که کوپلینگ بین میدان‌های مکانیکی، الکتریکی و مغناطیسی را در بر دارد و چگونگی ارزیابی را می‌آید. این شکل تبیین کند، کاربرد مستقیمی در سنسورها و محرک‌ها، کنترل ارتباطات در سازه‌ها و غیره دارد. همچنین این این مواد هنگامی که دردآمده‌اند، اثری نیز استفاده شده است. بسیاری از این نوع سازه‌های هنگامی به صورت نمایشی و استفاده شده‌اند. در مقابل حاضر ارتباطات ناهنجاری خیره‌کننده یک صفحه مستقل شکل مورد بررسی قرار گرفته است.

فیبر و همکاران [1] فرکانس‌های طبیعی و روق مربوط به مدل مدرج نابعی را برای شرایط مزی مختلط به‌دست آورده‌اند. حسینی‌نیک و همکاران [2,3] ارتباطات آزاد ورق مستقل شکل مدرج نابعی را برای شرایط مزی مختلط بررسی نشانده و یکپارچه تحلیلی برای آن به‌دست آورده‌اند. ارتباطات غیرخطی ورق‌های مدرج نابعی نیز موضوع تحقیقات زیادی بوده است.

شکل 1 ساختار کلی مواد مدرج نابعی [26]
لا يمكنني قراءة النص العربي بشكل صحيح.

يرجى تقديم النص باللغة العربية بشكل قابل للقراءة بشكل صحيح.

لا يمكنني قراءة النص العربي بشكل صحيح.

يرجى تقديم النص باللغة العربية بشكل قابل للقراءة بشكل صحيح.

لا يمكنني قراءة النص العربي بشكل صحيح.

يرجى تقديم النص باللغة العربية بشكل قابل للقراءة بشكل صحيح.

لا يمكنني قراءة النص العربي بشكل صحيح.

يرجى تقديم النص باللغة العربية بشكل قابل للقراءة بشكل صحيح.

لا يمكنني قراءة النص العربي بشكل صحيح.

يرجى تقديم النص باللغة العربية بشكل قابل للقراءة بشكل صحيح.
معادلات ساختاری مواد مدرج تابعی

مگنتو-الکترو-الاستیک

کوپلینگ مگنتو-الکترو-الاستیک این مواد از طریق روابط نش-کرنش صورت می‌گیرد. معادلات ساختاری مواد مدرج تابعی مگنتو-الکترو-الاستیک خاطه به‌صورت زیر نوشته می‌شوند [26]:

\[\sigma = \epsilon_0 e + e(-E) + q(-H) \] \(\text{(الف)} \)
\[D = e^T e - e(-E) - d(-H) \] \(\text{(ب)} \)
\[D = q^T q - d(-E) - \mu(-H) \] \(\text{(ب)} \)

که برای یک ورق مدرج تابعی مگنتو-الکترو-الاستیک همانگرد ضرایب در حالت بسته‌بانه به‌صورت زیر می‌باشد:

\[
C = \begin{bmatrix}
C(z)_{11} & C(z)_{12} & 0 & 0 & 0 \\
C(z)_{21} & C(z)_{22} & 0 & 0 & 0 \\
0 & 0 & C(z)_{44} & 0 & 0 \\
0 & 0 & 0 & C(z)_{55} & 0 \\
0 & 0 & 0 & 0 & C(z)_{66}
\end{bmatrix}
\]

\[
\epsilon = \begin{bmatrix}
\epsilon(z)_{11} & 0 & 0 & e(z)_{12} & 0 & 0 \\
0 & \epsilon(z)_{22} & 0 & 0 & e(z)_{23} & 0 \\
e(z)_{31} & 0 & 0 & \epsilon(z)_{32} & 0 & 0 \\
0 & 0 & 0 & \epsilon(z)_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & \epsilon(z)_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & \epsilon(z)_{66}
\end{bmatrix}
\]

\[
\mu = \begin{bmatrix}
\mu(z)_{11} & 0 & 0 & \mu(z)_{12} & 0 & 0 \\
0 & \mu(z)_{22} & 0 & 0 & \mu(z)_{23} & 0 \\
0 & 0 & \mu(z)_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & \mu(z)_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & \mu(z)_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & \mu(z)_{66}
\end{bmatrix}
\]

\[
d = \begin{bmatrix}
d(z)_{11} & 0 & 0 & 0 & 0 & 0 \\
0 & d(z)_{22} & 0 & 0 & 0 & 0 \\
0 & 0 & d(z)_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & d(z)_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & d(z)_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & d(z)_{66}
\end{bmatrix}
\]

وی به‌ترتیب بردار نش و کرنش، \(B \) و \(D \) به‌ترتیب \(E \) از جایه جابجای الکتریکی و \(H \) از جایه جابجای مغناطیسی، \(\sigma \) و \(e \) به‌ترتیب ضرایب ماتریس الاستیک و الکتریکی، \(\epsilon \) و \(q \) به‌ترتیب ضرایب الکتریکی و مغناطیسی، \(\mu \) و \(d \) به‌ترتیب ماتریس پیوست پیوست الکتریکی و پیوست مغناطیسی، \(V_B \) و \(V_C \) به‌ترتیب حجمی فاز و خاکستری این مواد می‌باشند.

\[
V_B + V_C = 1 \tag{4}
\]
\[
P_{eff} = P_B V_B + P_C V_C \tag{5}
\]
مدل‌سازی مسئله‌ای استفاده از تهوری

در این تهوری میدانهای جابجایی طبق اصل همیلتون بهصورت ناپایی درجه‌سوم از (u,v,w) در راستای خاصیت بهصورت زیر هستند [28]:

\[
\begin{align*}
 u(x,y,z,t) &= u_0(x,y,t) + z\phi_0(x,y,t) - \frac{4}{3h} \varepsilon^2 \left(\frac{\partial u_0}{\partial x} \right) \\
 v(x,y,z,t) &= v_0(x,y,t) + z\phi_0(x,y,t) - \frac{4}{3h} \varepsilon^2 \left(\frac{\partial v_0}{\partial y} \right) \\
 w(x,y,z,t) &= w_0(x,y,t) + z\phi_0(x,y,t) - \frac{4}{3h} \varepsilon^2 \left(\frac{\partial w_0}{\partial z} \right)
\end{align*}
\]

\[(V)\]

که نمی‌توانیم \(\phi_0 = \frac{\partial u_0}{\partial x} \) و \(\phi_0 = \frac{\partial v_0}{\partial y} \) و \(\phi_0 = \frac{\partial w_0}{\partial z} \) نتایج به‌هم‌شانست که به‌این تعریفی‌ای رده و توان موج‌های مثبت که باشد تعریف یک نقطه از ورق در صفحه \(z = 0 \) را نشان می‌دهد.

کرنش‌های غیرخطی مناظر با تهوری بررسی می‌شوند:

\[
\begin{align*}
 e_{x0}^{(0)} &= \frac{\partial u_0}{\partial x}, ~ e_{y0}^{(0)} = \frac{\partial v_0}{\partial y}, ~ e_{z0}^{(0)} = \frac{\partial w_0}{\partial z} \\
 e_{x0}^{(1)} &= \frac{\partial u_0}{\partial x}, ~ e_{y0}^{(1)} = \frac{\partial v_0}{\partial y}, ~ e_{z0}^{(1)} = \frac{\partial w_0}{\partial z} \\
 e_{x0}^{(2)} &= \frac{\partial u_0}{\partial x}, ~ e_{y0}^{(2)} = \frac{\partial v_0}{\partial y}, ~ e_{z0}^{(2)} = \frac{\partial w_0}{\partial z} \\
 e_{x0}^{(0)} &= \frac{\partial u_0}{\partial x}, ~ e_{y0}^{(0)} = \frac{\partial v_0}{\partial y}, ~ e_{z0}^{(0)} = \frac{\partial w_0}{\partial z}
\end{align*}
\]

\[(A)\]

با ترکیب معادلات (0-3) تغییرات خواص مؤثر

الاستیک، بی‌پیوکریک، بی‌پیوکریک، دی‌الکتریک و

تفویضی‌های مغناطیسی در دامائی ناپایی به‌صورت زیر باید

می‌شود:

\[
\begin{align*}
 e(x,y,z) &= (c_e - c_0) \left(\frac{2x + h}{2h} \right)^2 + c_0 \\
 e(x,y,z) &= (c_e - c_0) \left(\frac{2x + h}{2h} \right)^2 + c_0 \\
 e(x,y,z) &= (c_e - c_0) \left(\frac{2x + h}{2h} \right)^2 + c_0 \\
 e(x,y,z) &= (c_e - c_0) \left(\frac{2x + h}{2h} \right)^2 + c_0 \\
 e(x,y,z) &= (c_e - c_0) \left(\frac{2x + h}{2h} \right)^2 + c_0 \\
 \rho &= (\rho_e - \rho_0) \left(\frac{2x + h}{2h} \right)^2 + \rho_0
\end{align*}
\]

\[(1-6)\]

تغییرات ضرب دی‌الکتریک مؤثر برای جنوب مورد مختلف رواج p در عرض ضخامت ورق در شکل

3 بانده داده شده است. لی. [27] با استفاده از آنالیز

میکروکانالیکی ماده مرکب مشکل از دو فاز داد که ابتدا دو بار مکانیک (\(\mu_{ij} \)) غیر صفر بوده

و با ساخته به فاکتورهای مانند روش ترکیب مواد و کسر

حجمی یک یا دو فاز است. تحقیقات اخیر نشان داده‌اند در حالتی که ورق تحت بیان‌سنج الکتریکی با

یک مغناطیسی قرار گرفته و هدف مطلعه رفتار دینامیکی

ارتباطی ورق با شیء اثر ضرب مکانیک-الکتریک بر

فرکانس ارتعاشی سیستم ناپایی است و می‌توان از آن

چشم‌پوشید.

شکل 3 تغییرات ضرب دی‌الکتریک \(\varepsilon_{33} \) نسبت به تغییر

گرادیان مواد

p
ل시스템 علم کاربردی و معادلات در مکانیک

قانونی کوش برای حالت‌های الکترواستاتیک و
مکانوسکوپی، به‌صورت زیر هستند [20] :

\[
D_{xx} + D_{yy} + D_{zz} = 0
\]
\[
B_{xx} + B_{yy} + B_{zz} = 0
\]

با استفاده از دو معادله (13-الف و ب) گرادیان پتانسیل‌های الکتریکی و مغناطیسی به‌صورت زیر به‌دست می‌آید:

\[
\Phi_x = (e_{xx} + \epsilon_{yy}) \frac{e_{31}(x)}{e_{33}(x)} e_3(x) + \left(\epsilon^{(3)}_{xx} + \epsilon^{(3)}_{yy}\right) e_3(x) + \Phi_0
\]

\[
\Phi_y = (e_{xx} + \epsilon_{yy}) \frac{e_{31}(y)}{e_{33}(y)} e_3(x) + \left(\epsilon^{(3)}_{xx} + \epsilon^{(3)}_{yy}\right) e_3(y) + \Phi_0
\]

که در آن علامت تابث‌های الکتریکی و مغناطیسی
\(e_{xx}, e_{yy}, \epsilon_{xx}, \epsilon_{yy} \)

به‌دلیل توجه به شرایط مرزی الکتریکی و مغناطیسی زیست به‌دلیل تابث‌های الکتریکی و مغناطیسی هستند. و علاوه بر (14) و (15) در q(x) و e(z) مشخص شده است.

\[
\Phi(x, y, -h/2) = 0, \quad \Phi(x, y, +h/2) = V_0
\]

\[
\Psi(x, y, -h/2) = 0, \quad \Psi(x, y, +h/2) = \Omega_0
\]

با جای‌گذاری معادلات (1-2) به‌همراه کرنش‌های

\[
\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = 0
\]

\[
\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0
\]

به‌بزرگی معادلات (10) و (11) به‌همراه کرنش‌های

که در آن علامت تابث‌های الکتریکی و مغناطیسی
\(e_{xx}, e_{yy}, \epsilon_{xx}, \epsilon_{yy} \)

به‌دلیل توجه به شرایط مرزی الکتریکی و مغناطیسی زیست به‌دلیل تابث‌های الکتریکی و مغناطیسی هستند. و علاوه بر (14) و (15) در q(x) و e(z) مشخص شده است.

\[
\Phi(x, y, -h/2) = 0, \quad \Phi(x, y, +h/2) = V_0
\]

\[
\Psi(x, y, -h/2) = 0, \quad \Psi(x, y, +h/2) = \Omega_0
\]

با جای‌گذاری معادلات (1-2) به‌همراه کرنش‌های

\[
\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = 0
\]

\[
\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0
\]

به‌بزرگی معادلات (10) و (11) به‌همراه کرنش‌های

که در آن علامت تابث‌های الکتریکی و مغناطیسی
\(e_{xx}, e_{yy}, \epsilon_{xx}, \epsilon_{yy} \)

به‌دلیل توجه به شرایط مرزی الکتریکی و مغناطیسی زیست به‌دلیل تابث‌های الکتریکی و مغناطیسی هستند. و علاوه بر (14) و (15) در q(x) و e(z) مشخص شده است.

\[
\Phi(x, y, -h/2) = 0, \quad \Phi(x, y, +h/2) = V_0
\]

\[
\Psi(x, y, -h/2) = 0, \quad \Psi(x, y, +h/2) = \Omega_0
\]

با جای‌گذاری معادلات (1-2) به‌همراه کرنش‌های

\[
\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = 0
\]

\[
\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0
\]

به‌بزرگی معادلات (10) و (11) به‌همراه کرنش‌های

که در آن علامت تابث‌های الکتریکی و مغناطیسی
\(e_{xx}, e_{yy}, \epsilon_{xx}, \epsilon_{yy} \)

به‌دلیل توجه به شرایط مرزی الکتریکی و مغناطیسی زیست به‌دلیل تابث‌های الکتریکی و مغناطیسی هستند. و علاوه بر (14) و (15) در q(x) و e(z) مشخص شده است.

\[
\Phi(x, y, -h/2) = 0, \quad \Phi(x, y, +h/2) = V_0
\]

\[
\Psi(x, y, -h/2) = 0, \quad \Psi(x, y, +h/2) = \Omega_0
\]

با جای‌گذاری معادلات (1-2) به‌همراه کرنش‌های

\[
\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = 0
\]

\[
\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0
\]

به‌بزرگی معادلات (10) و (11) به‌همراه کرنش‌های

که در آن علامت تابث‌های الکتریکی و مغناطیسی
\(e_{xx}, e_{yy}, \epsilon_{xx}, \epsilon_{yy} \)

به‌دلیل توجه به شرایط مرزی الکتریکی و مغناطیسی زیست به‌دلیل تابث‌های الکتریکی و مغناطیسی هستند. و علاوه بر (14) و (15) در q(x) و e(z) مشخص شده است.

\[
\Phi(x, y, -h/2) = 0, \quad \Phi(x, y, +h/2) = V_0
\]

\[
\Psi(x, y, -h/2) = 0, \quad \Psi(x, y, +h/2) = \Omega_0
\]
(معادلة 8) در معادلات (16-10) و با فرض اين كه ميدانات الكتريكية ومغناطيسية في راسات صخاخ
(2) باستعمال، متجهات نيو مان و متجهات تنش
مرتبة بالا به شكل سطح Batch ضهر

\[
\begin{align*}
\{Q_x \} &= \begin{bmatrix} A_{x4} & 0 & 0 & \gamma_{x(0)} \\ 0 & A_{x5} & \gamma_{x(0)} \\ 0 & 0 & D_{x5} & \gamma_{x(2)} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} z^2 \, dz \\
\{R_x \} &= \begin{bmatrix} D_{x4} & 0 & 0 & \gamma_{x(0)} \\ 0 & D_{x5} & \gamma_{x(0)} \\ 0 & 0 & D_{x5} & \gamma_{x(2)} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} z^2 \, dz
\end{align*}
\]

(19)

(20)

في معادلات البار سكين مجموع مضيف

AST-1: سكين مجموع مضيف في البار مكثف

الكتريكية سكين. فرضي في زيير برای سادات و اختصار

\[X_{ij}^{\text{ela}} + X_{ij}^{\text{me}} = X_{ij}, \quad X_{ij} = (A, B, D, E, F, H)\]

\[X_{ij}^{\text{el}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

\[X_{ij}^{\text{me}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

\[X_{ij}^{\text{el}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

\[X_{ij}^{\text{me}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

\[X_{ij}^{\text{el}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

\[X_{ij}^{\text{me}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

\[X_{ij}^{\text{el}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

\[X_{ij}^{\text{me}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

\[X_{ij}^{\text{el}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

\[X_{ij}^{\text{me}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

\[X_{ij}^{\text{el}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

\[X_{ij}^{\text{me}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

\[X_{ij}^{\text{el}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

\[X_{ij}^{\text{me}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

\[X_{ij}^{\text{el}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

\[X_{ij}^{\text{me}} = \int_{-\frac{h}{2}}^{\frac{h}{2}} C_{ij}(z) \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz, (i, j = 1, 2, 6)\]

(22)

(23)
بنا توجه به این که اثرات جملات انریک مربوط به جهان‌های معیار یافته و در این پژوهش، Φ_y، Φ_x، Φ_t، Φ_{xx}، Φ_{yy} و Φ_{zz} به نظر می‌رسد.

معادلات (۲۱-۲۴) در معادلات (۹-۱۱) به یک مثال پرداخته می‌شود.

دوران‌های A_{11}، A_{66}، A_{60}، G_{60} و V_{w0} به صورت زیر به‌دست می‌آیند:

$A_{11}u_{0,xx} + A_{66}u_{0,yy} + (B_{11} - c_1E_{11} - c_2\delta_1)\Phi_{xx} + (A_{11} - A_{66}) \left(v_{0,xx} + w_{0,yy} \right)$

$+ (B_{66} - c_1E_{66})\Phi_{xy}$

$+ (B_{60} - c_1E_{60})\Phi_{yx}$

$= c_1\Phi_{xx}^{(24)}$

$A_{11}v_{0,yy} + A_{66}v_{0,xx} + (B_{11} - c_1E_{11} - c_2\delta_1)\Phi_{yy} + (A_{11} - A_{66}) \left(u_{0,yy} + w_{0,xx} \right)$

$+ (B_{66} - c_1E_{66})\Phi_{yx}$

$+ (B_{60} - c_1E_{60})\Phi_{xy}$

$= c_1\Phi_{yy}^{(24)}$

$A_{11}w_{0,zz} + A_{66}w_{0,zz} + (B_{11} - c_1E_{11} - c_2\delta_1)\Phi_{zz}$

$+ (A_{11} - A_{66}) \left(w_{0,zz} \right)$

$= c_1\Phi_{zz}^{(24)}$
(m,n) است و
\(\beta = mn/b \) طوری که
\(\alpha = na/a \) نشان دهنده مود حرکت ورق می‌باشد.

\[
\begin{align*}
\mathbf{u}_0(x,y,t) &= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} U_{mn}(t) \cos \alpha x \sin \beta y, \\
\mathbf{v}_0(x,y,t) &= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} V_{mn}(t) \sin \alpha x \cos \beta y, \\
\mathbf{w}_0(x,y,t) &= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn}(t) \sin \alpha x \sin \beta y, \\
\phi_x(x,y,t) &= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} X_{mn}(t) \cos \alpha x \sin \beta y, \\
\phi_y(x,y,t) &= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} Y_{mn}(t) \sin \alpha x \cos \beta y
\end{align*}
\]

(25)

با استفاده از روش گوگرکین، چهار معادله دیفرانسیل جزئی خبرخطي (24) و (26) را به چهار معادله دیفرانسیل X_{mn}(t), V_{mn}(t), U_{mn}(t) و W_{mn}(t) معمولی خبرخطی بر حسب (Jابه جایی عرضی (W_{mn}(t) و Y_{mn}(t)) تبدیل می‌سوند:

\[
\begin{align*}
K_1 U_{mn}(t) + K_1 V_{mn}(t) + K_1 X_{mn}(t) + K_1 Y_{mn}(t) &= -K_1 W_{mn}(t) - K_1 W_{mn}(t), \\
K_2 U_{mn}(t) + K_2 V_{mn}(t) + K_2 X_{mn}(t) + K_2 Y_{mn}(t) &= -K_2 W_{mn}(t) - K_2 W_{mn}(t), \\
K_3 U_{mn}(t) + K_3 V_{mn}(t) + K_3 X_{mn}(t) + K_3 Y_{mn}(t) &= -K_3 W_{mn}(t) - K_3 W_{mn}(t), \\
K_4 U_{mn}(t) + K_4 V_{mn}(t) + K_4 X_{mn}(t) + K_4 Y_{mn}(t) &= -K_4 W_{mn}(t) - K_4 W_{mn}(t)
\end{align*}
\]

(26)

معادله (24-ب) با استفاده از این روش به صورت زیر نوشته می‌شود:

\[
\begin{align*}
L_{11} U_{mn}(t) + L_{12} V_{mn}(t) + L_{13} X_{mn}(t) + L_{14} Y_{mn}(t) + L_{21} U_{mn}(t) W_{mn}(t) + L_{22} V_{mn}(t) \hat{W}_{mn}(t) + L_{31} X_{mn}(t) W_{mn}(t) + L_{32} Y_{mn}(t) \hat{W}_{mn}(t) + L_{41} W_{mn}(t) + L_{42} \hat{W}_{mn}(t) + L_{43} \hat{W}_{mn}(t) = 0
\end{align*}
\]

(27)

در این معادلات، سفتی‌های کتشی، سفتی‌های D_{ij} و سفتی‌های H_{ij} (B_{ij}) با استفاده از روش‌های مختلفی می‌شوند. سفتی‌های خمشی سفتی‌های H_{ij} (B_{ij}) و F_{ij} (E_{ij}) با استفاده از روش‌های مختلفی می‌شوند که تأثیر کمی در پاسخ ورق هر نازک یا نازک همگن دارد.

\[
\begin{align*}
(B_{66} - c_1 E_{11}) v_{o,xx} + (c_1 E_{11} + c_1 E_{66} + B_{11} - B_{66}) v_{o,yy} + (c_1 E_{66} - c_4 E_{66} - B_{11} + B_{66}) w_{o,xy} &= -c_1 (H_{11} - \delta_3) + F_{11} + \delta_2 w_{o,yy} + D_{11} \phi_{xy} \\
(B_{66} - c_1 E_{11}) w_{o,yy} + (c_1 E_{11} + c_1 E_{66} + B_{11} - B_{66}) v_{o,xy} + (c_1 E_{66} - c_4 E_{66} - B_{11} + B_{66}) w_{o,xy} &= -c_1 (H_{11} - \delta_3) + c_1 (2F_{11} + \delta_2) + \phi_{xy} \\
+(c_1^2 H_{66} - 2c_1 F_{66} + D_{66}) \phi_{xy} &= -c_1 (2F_{11} - 2F_{11} + D_{66}) \phi_{xy} \\
-c_2 F_{44} - c_2 D_{44} + \phi_{xy} &= (c_2 F_{44} - c_2 D_{44} + A_{44}) \phi_{xy} \\
-c_2 F_{44} - c_2 D_{44} + A_{44} \phi_{xy} &= c_1 (c_1^2 - 1) \phi_{xy}
\end{align*}
\]

(24-ث)

\[\text{شکل } 4\text{ مشخصات هندسی و شرایط مرزی ورق مدرج نام: }
\]

\[\text{مکان‌الکترونیکی-استیک}
\]

شرایط کنی که خبرخطی ورق ساده و همگن در نظر گرفته شده است. جای‌گیری‌ها و رابط‌ها متناهی با این شرایط مرزی شکل (4) به صورت زیر مستند می‌باشد.

\[\text{شکل } 4\text{ مشخصات هندسی و شرایط مرزی ورق مدرج نام: }
\]
جواب دستگاه معادلات (26) به صورت زیر نوشته می‌شود:

\[U_{m} (t) = L_{1} W_{m} (t) + L_{2} W_{m} (t) + L_{3} W_{m} (t) \]

\[V_{m} (t) = L_{1} W_{m} (t) + L_{2} W_{m} (t) + L_{3} W_{m} (t) \]

\[X_{m} (t) = L_{1} W_{m} (t) + L_{2} W_{m} (t) + L_{3} W_{m} (t) \]

\[Y_{m} (t) = L_{1} W_{m} (t) + L_{2} W_{m} (t) + L_{3} W_{m} (t) \]

(28)

در معادلات فرآیند ضرایب

\[\tau_{ij} (i = 1, 2, 4, 5; j = 1, 2, 3) \]

\[K_{ij} (i = 1, 2, 4, 5; j = 1, 2, 3, 4, 5, 6, 7) \]

مراجع [32 آورده شده‌اند]

جدول ۱ خواص ماده مگنتو-الکترو-الاستیک [29]

<table>
<thead>
<tr>
<th>BaTiO3 (B)</th>
<th>CoFe2O4 (C)</th>
<th>C11 (10^9 N/m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>166.0</td>
<td>286.0</td>
<td></td>
</tr>
<tr>
<td>77.00</td>
<td>173.0</td>
<td></td>
</tr>
<tr>
<td>43.00</td>
<td>45.30</td>
<td></td>
</tr>
<tr>
<td>44.50</td>
<td>56.50</td>
<td></td>
</tr>
<tr>
<td>11.60</td>
<td>0.000</td>
<td>e12 (C/m^2)</td>
</tr>
<tr>
<td>-4.400</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>11.60</td>
<td>0.093</td>
<td>e13 (10^9 C^2/N/m)</td>
</tr>
<tr>
<td>10.00</td>
<td>157.0</td>
<td>µ12(10^-12 N/m^2)</td>
</tr>
<tr>
<td>0.000</td>
<td>550.0</td>
<td>q13 (Nm/Am)</td>
</tr>
<tr>
<td>0.000</td>
<td>580.3</td>
<td></td>
</tr>
<tr>
<td>5800</td>
<td>5300</td>
<td>D10(10^9 Ns/VC)</td>
</tr>
</tbody>
</table>

(30)

در رابطه بالا، \(f \) دامنه تعریفی به‌یاد می‌آید و \(\Lambda \) برازدگی طبیعی خطی و

\[\omega_0 = (Z_2/Z_1)^{f} \]

\[\alpha_2 = A^2 Z_3 / Z_1 \]

\[\beta = A / Z_2 \] \(\beta \) ضریب جمله سنتی غیرخطی است که فقط شامل مولکول‌های مرزهای سنتی می‌باشد و ضرایب جمله‌ای اینترسی غیرخطی \(\alpha_1 = Z_3 / Z_1 \) می‌باشد که شامل مولکول‌های سنتی، شامل ترم‌های

چگالی نژ هست.

صحنه گذاری مدل

جدول‌های (۱-۲۰) فرکانس‌های خطی به‌یاد می‌آید و ورق ایزوتروپ، پیژوکلریک و

\(q = (Z_1/Z_2)^{f} \)\n
ورق براداری و

\(h = 0.3m \) \(a = b = 1m \) پیژوگن‌مانند برای استفاده در جدول ۱ خواص ماده سازند و آزمایش

HSDT است. از مقایسه نتایج این تحقیق و نتایج مشخص می‌شود که نتایج بدست‌آمده در این تحقیق

مطابقت خوبی با نتایج ذکر شده دارند و اختلاف

با جای‌گذاری جواب‌دهی مدل جواب‌دهی به کمک معادله (27) و ساده کردن آن، معادله دیفرانسیل غیرخطی

حرکت ورق مدرج تابع مگنتو-الکترو-الاستیک در

مود اول \(n=m=1 \) به صورت زیر به‌دست می‌آید:

\[Z_1 W_{it} + Z_2 W + Z_3 W_{it} + Z_4 W^2 + Z_5 W^3 \]

\[= D_1(10^9 Ns/VC) \]

(29)

در رابطه فوق، \(i = 1, 2, \ldots, 6 \).

| sl.sorbar.sanader.1389 | 56 |
تحلیل ارتعاشات اجباری ورق

با استفاده از روش میقاس‌های زمانی چندگانه و معنی پارامتر دیتونینگ (Detuning Parameter) به عنوان a و a_0 کمیته برای انحراف از فرکانس خطی ω_0 ترکیبی ساختار ارتعاشات اجباری در تشدید اولیه و تشکیل ناونه تحلیل می‌شود.

جواب تقریبی W با استفاده از روش میقاس‌های زمانی چندگانه به صورت زیر می‌باشد:

$$W(t; \varepsilon) = W_0(T_0, T_1, T_2) + \varepsilon W_1(T_0, T_1, T_2) + \varepsilon^2 W_2(T_0, T_1, T_2)$$

(31)

که در آن:

$$T_n = e^n \tau \quad (n = 0,1,2,...)$$

(32)

چون سطح ترازه سه عیانی $O(\varepsilon^3)$ انجام می‌گردد فقط T_0, T_1, T_2 موردیار خواهند ودید. مشخصات نسبت به 2 برحس مشخصات جزئی T_0 به صورت زیر خواهد بود:

$$\frac{d}{dt} = D_0 + \varepsilon D_1 + \varepsilon^2 D_2$$

$$\frac{d^2}{dt^2} = D_0^2 + 2\varepsilon D_1 D_2 + \varepsilon^2 (D_1^2 + 2D_0 D_2)$$

(33)

تشکیل اولیه‌ای در این حالت فرکانس ترکیبی Ω (Mono-Frequency) برای میقاس‌های نزدیک فرکانس طبیعی خطی ورق ω_0 در نظر گرفته می‌شود.

$$\Omega = \omega_0 + \varepsilon^2 \sigma$$

(34)

با استفاده از روش میقاس‌های زمانی چندگانه و جایگاه میقاس‌های (31 و 32) در معادله حرکت

$$\dot{x}(t) + \varepsilon^2 \sigma x(t) + \varepsilon \dot{x}(t) + \varepsilon^2 x(t) = 0$$

در معادله حاصل، معادلات آنی به‌دست می‌آیند:

$$(m,n)$$

<table>
<thead>
<tr>
<th>روش حل</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSDT [30]</td>
</tr>
</tbody>
</table>

جدول 2 مقایسه فرکانس‌های طبیعی به بعد ω و روش همسانگرد مربعی شکل با خواص مؤثر اندازه‌ای‌ای FVA

$$(m,n)$$

<table>
<thead>
<tr>
<th>روش حل</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSDT [30]</td>
</tr>
</tbody>
</table>

جدول 3 مقایسه فرکانس‌های طبیعی به بعد ω و روش همسانگرد مربعی شکل با خواص مؤثر اندازه‌ای‌ای FVA

$$(m,n)$$

<table>
<thead>
<tr>
<th>روش حل</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSDT [30]</td>
</tr>
</tbody>
</table>

جدول 4 مقایسه فرکانس‌های طبیعی به بعد ω و روش همسانگرد کرو-لاستیک مربعی شکل

$$(m,n)$$

<table>
<thead>
<tr>
<th>روش حل</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSDT [30]</td>
</tr>
</tbody>
</table>

جدول 5 مقایسه فرکانس‌های طبیعی به بعد ω و روش همسانگرد کرو-لاستیک مربعی شکل

$$(m,n)$$

<table>
<thead>
<tr>
<th>روش حل</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSDT [30]</td>
</tr>
</tbody>
</table>
شکل (5) تغییرات دامنه پاپسی نسبت به دامنه تحریک به‌زایی چند مقدار پارامتر دیتوبینیگ را نشان می‌دهد. این منحنی به‌طور مستقیم از معادله (24) به دست می‌آید و برای مقادیر بزرگ پارامتر دیتوبینیگ منحنی‌ها در ابتدا بر یک ممسح هستند. با پایین‌رفتن دما و در دشت، که در این محدوده به‌زایی پرخی از پارامتر یا به‌بزرگی دیتوبینیگ تعدادی از منحنی‌ها چندمقداری هستند ولکن پایین‌تر چهار در حالی که پر از تقسیم‌بندی دیگر از منحنی ها این حالت اتفاق نمی‌افتد.

در شکل (7) منحنی پاپسی-فرکانسی به‌زایی دو دامنه تحریک مختلف نشان داده شده است. وقته دامنه تحریک افزایشی می‌باید منحنی پاپسی-فرکانسی از محور α = 0 دور می‌شود و با همکاری با انتقال می‌پایه.

\[
D_i^3 W_i + \alpha_i^3 W_i = 0
\]

\[
D_i^3 W_i + \alpha_i^3 W_i = -2 D_i^3 D_j W_i - \alpha_i W_i (D_j W_i)
\]

\[
D_i^3 W_i + \alpha_i^3 W_i = - D_i^3 W_i - 2 D_i^3 D_j W_i - 2 D_i^3 D_k W_i - 2 \alpha_i W_i D_j D_k W_i - 2 \alpha_i W_i W_j - \alpha_i W_i + \alpha_i W_i + \alpha_i W_i
\]

\[
\cos \alpha_i \omega_i T_i + 2 \cos \alpha_i \omega_i T_i + 2 \cos \alpha_i \omega_i T_i + 2 \cos \alpha_i \omega_i T_i
\]

با حل معادله (25) و قرار دادن نتیجه در معادله (26) و برای صفر قرار دادن جملات مقر sque = 0 داریم:

\[
D_i A = 0 \rightarrow A = A(T_i)
\]

جواب معادله (37) به‌صورت زیر است:

\[
D_i^3 W_i + \alpha_i^3 W_i = -2 i a D_i A \exp \left(i a T_i \right)
\]

\[
+ \left(i a^2 - \frac{1}{2} \left[A^2 \exp \left(i a T_i \right) + 2 A A^2 \right] \right) + cc
\]

اگر جواب معادلات (33 و 36) با در نظر گرفتن شرط حل حل‌به‌دری (38) در معادله (37) جای گذاری شود، معادلة زیر بسته می‌آید:

\[
D_i^3 W_i + \alpha_i^3 W_i = -2 i a D_i A + \frac{1}{2} A \exp \left(i a T_i \right)
\]

\[
+ \left(\frac{10}{3} \frac{a_i^2}{a_i^3} - \frac{11}{3} a_i^3 + \frac{1}{3} a_i^3 \right) A^2 - a_i^2 \exp \left(i a T_i \right) + cc
\]

\[
\exp \left(i a T_i \right) + cc
\]

در معادله (40) و معروف‌شده در جملات مختلط مردود است. با برگیر صفر برای دادن جملات منفرده معادله (40) و چند کردن این خیز و مردودی و (41) و (42) قسمت محیطی و مقومی عبارت حاصل از هم معادله پاپسی-فرکانسی به‌جای \(\sin(\gamma) \) و \(\cos(\gamma) \) است به‌صورت زیر ارائه می‌گردد:

\[
\begin{aligned}
\frac{9 a_i a_i^3 - 10 a_i^3}{24 a_i^5} & + 11 a_i a_i^3 - a_i^3 a_i - a_i^3 a_i^3 \nonumber \\
\frac{1}{a_i^3} & - \frac{8}{4 a_i^3}
\end{aligned}
\]

شکل 6 منحنی پاپسی-فرکانسی در حالت اولیه به‌صورت زیر ارائه می‌گردد:

\[
\begin{aligned}
\frac{9 a_i a_i^3 - 10 a_i^3}{24 a_i^5} & + 11 a_i a_i^3 - a_i^3 a_i - a_i^3 a_i^3 \nonumber \\
\frac{1}{a_i^3} & - \frac{8}{4 a_i^3}
\end{aligned}
\]
شکل‌های (9) و (10) به ترتیب محتوی پاسخ فرکانسی و دامنه پاسخ ورق مدرج تابعی مکانیکی-الکترو-الاستیک برای گرادیان موارد تغییر خواص مولکولی ورق در اثر تغییر گرادیان \(n_0 = 10 \) مگنتو- (جنگ های مختلف) تحت تحریک \(p \) نشان داده شد است. برای ورق مدرج تابعی مکانیکی-الکترو-الاستیک مشاهده می‌شود که با تغییر گرادیان \(p \) و تغییر ترددی خواص مولکولی ورق از فاز A به فاز B منحنی‌های پاسخ فرکانسی به سمت راست منحرف می‌شوند و میزان سخت‌سوزی‌سنج سیستم افزایش می‌یابد.

شکل (9) محتوی دامنه-پاسخ را برای \(p \) و برای \(n_0 \) نشان می‌دهد. در این شکل مشاهده می‌شود با تغییر گرادیان موارد متعددی که نتایج مشابه می‌یابد و میزان افزایش دامنه حکم در پرس از پیدایش، برای گرادیان‌های کوچکتر بیشتر است.

در شکل (7) محتوی پاسخ-فرکانسی چهار ورق مدرج تابعی-الکترو-الاستیک مربوط به فرکانس (p) متفاوت حرارتی در دامنه پیش‌تر بزرگ نشست. در نتیجه، مقادیر طول به عرض کوچک‌تر به مدت راست منحرف می‌شود و در نتیجه با کاهش این نسبت سخت‌سوزی‌سنج سیستم افزایش می‌یابد. با افزایش آن محتوی پاسخ فرکانسی به مدت چپ می‌مائل می‌شود و در نتیجه سفید سیستم کاهش \(a/b \) و با توجه به شکل (10) با کاهش نسبت بازیکنی و تغییر در محدوده دامنه تحریک بیشتری می‌تواند اتفاق بیافتد. به عبارت دیگر، به‌معنای دامنه تحریک یکسان، دامنه حرکت در ورق که نسبت طول به عرض کوچک‌تر دارد، بیشتر می‌یابد.

شکل 9 محتوی پاسخ-فرکانسی در تشادید اولیه به‌ازای \(p=1 \) متفاوت حرارتی (b) ورق.

شکل 10 محتوی دامنه-پاسخ در تشادید اولیه به‌ازای \(p=1 \) متفاوت حرارتی (b) ورق.

شکل 7 محتوی پاسخ-فرکانسی در تشادید اولیه به‌ازای گرادیان (p) متفاوت از خواص مولکولی ورق مدرج تابعی.
شکل (11 و 12) به ترتیب منحنی پاسخ فرکانسی و دامنه پاسخ ورق مدرج نمایش مکانیکالکترو-الکترو-الکترو بکرای گران مرا ویکی 78 و 89 و در نسبت مقاوت طول بی عرض و بی ارایز 5 پرامر 10 رادیان به تابیه را نشان می‌دهد. مشاهده می‌شود منحنی پاسخ فرکانسی در شکل (11) به شکل‌های ضخامت‌های چسب با سمت چپ منحنی پاسخ و در نتیجه به کاهش ضخامت ورق سخت‌شونده سیستم کاهش می‌یابد و با افزایش آن منحنی پاسخ فرکانسی به سمت راست متمایل می‌شود و در نتیجه تغییر منحنی آغاز می‌یابد. با توجه به شکل (12) با کاهش ضخامت ورق ناحیه چندمقداری در جریان می‌شود و پدیده‌ی شین در محدوده دامنه تحریک بیشتری می‌توان اتفاق بیافند. با عبارت دیگر، به‌ویژه دامنه تحریک یکسان، دامنه حرکت در ورقی که ضخامت (h) کمتری دارد، بیشتر می‌باشد.

با توجه به منحنی‌های دامنه پاسخ در شکل (13 و 14) که برای 10 و 14 موه موثر برای گردان می‌شود، مشاهده می‌شود که در منحنی‌های دامنه-پاسخ پاناسیل الکتریکی مثبت و مغناطیسی منفی باعث افزایش دامنه بیشینه و محدود چندمقداری می‌شود و نیز پاناسیل الکتریکی منفی و مغناطیسی بیشینه دامنه بیشینه و محدود چندمقداری می‌شود. مقدار این افزایش با کاهش در دامنه بیشینه و محدود چندمقداری به‌ویژه در این که گردان موثر می‌کند و این به‌ویژه سمت خواص مغناطیسی بالا، پاسخ فاز B با فاصله 1 باشد، منحنی است، به‌طوری‌که اگر گردان موثر می‌شود، سمت فاز B با فاصله 1 (گردان‌های پایین 1)، پاناسیل الکتریکی رفتار حرکت و ارتعاشی ورق را تعیین می‌کند و نیز پاناسیل الکتریکی نسبت به پاناسیل الکتریکی تأثیر کمی دارد. اگر گردان موثر ورق به سمت فاز C باشد (گردان‌های بالا 20)، پاناسیل مغناطیسی رفتار ارتعاشی ورق را معنی می‌کند و ورق بیشتری تأثیر را از پاناسیل مغناطیسی می‌پذیرد.
توزیع‌پذیری برگذاری الکتریکی و مغناطیسی با شدت و جهت مناسب و تغییر در مقادیر پارامتر‌های ثابت در ارتفاعات دلخواه را در این نوع از سازه‌های هوشمند ایجاد کرد و یا اثر ارتفاعات نامطلوب را می‌رساند و نمود و دامنه ارتفاعات را اکنون کرد.

نتیجه‌گیری

Jerashenas hâye normal urushî, \(\phi_x \) va \(\phi_y \)
behtarî, holl mojorhây \(x \) va \(y \)
mojolehây dâ alkrik \(\epsilon_{ij} \)
farânas dorâni xutî \(\omega_0 \)
\[N_{xx} \quad N_{yy} \]
\[N_{xy} \]
\[P_{xx} \quad P_{yy} \]
\[P_{xy} \quad R_x \quad R_y \]
menjezehaye noruvi saflouyî
\(Q_x \) va \(Q_y \)

پوست

\[e(x) = \int_{-h/2}^{+h/2} e_{15}(z) \left(\frac{3c_1 z^2 - 1}{c_1} \right) dz \]

\[q(x) = \int_{-h/2}^{+h/2} q_{15}(z) \left(\frac{3c_1 z^2 - 1}{c_1} \right) dz \]

\[\Phi_0 = \frac{1}{h} \left(V_0 - (e_{xx} + e_{yy}) V_1 - \left(e_{xx}^{(3)} + e_{yy}^{(3)} \right) V_2 \right) \]

\[\Psi_0 = \frac{1}{h} \left(\Omega_0 - (e_{xx} + e_{yy}) \Omega_2 - \left(e_{xx}^{(3)} + e_{yy}^{(3)} \right) \Omega_1 \right) \]

\[\Omega_1 = \int_{-h/2}^{+h/2} \frac{q_{31}(z)}{\mu_{33}(z)} dx, \quad \Omega_2 = \int_{-h/2}^{+h/2} \frac{q(z)}{\mu_{33}(z)} dx \]

\[V_1 = \int_{-h/2}^{+h/2} \frac{e_{31}(x)}{\varepsilon_{33}(x)} dx, \quad V_2 = \int_{-h/2}^{+h/2} \frac{e(x)}{\varepsilon_{33}(x)} dx \]

(الف-1) (الف-2) (الف-3) (الف-4)
نشریه علوم کاربردی و محاسباتی در مکانیک

سال سی‌م، شماره دو، ۱۳۹۴