ارائه یک روش عددی از مرتبه دقت بالا برای حل معادلات دیفرانسیل-جبری ظاهر شده در سیستم‌های مکانیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده ریاضی، دانشگاه تفرش

چکیده

در حالی که مدل‌سازی سینماتیکی و دینامیکی سیستم‌های مکانیکی به خوبی توسعه یافته، لکن حل عددی معادلات حاکم بر بسیاری از این مدل‌ها هنوز یک زمینه بزرگ در حال بررسی است. از آنجایی که در هر سیستم مکانیکی محدود، اتصالات اجسام متصل، حرکت نسبی خود را محدود می‌نمایند، لذا معادلات حاکم بر مدل، معمولا دستگاهی از معادلات دیفرانسیل-جبری را تشکیل می‌دهند که هم معادلات دیفرانسیلی و هم معادلات جبری را شامل می‌شود. لازم به ذکر است که برخلاف حل تحلیلی و عددی معادلات دیفرانسیلی، رفتار تحلیلی و عددی معادلات دیفرانسیل-جبری پیچیده‌تر و کاملا متفاوت از معادلات دیفرانسیلی است. در این مقاله، یک روش عددی از مرتبه دقت بالا جهت حل دستگاه معادلات دیفرانسیل-جبری ظاهر شده در سیستم‌های مکانیکی ارایه می‌گردد. روش ارائه شده مبتنی بر استفاده از یک روش شبه‌طیفی است به طوری که حل دستگاه معادلات دیفرانسیل-جبری حاکم بر مدل را به حل یک دستگاه از معادلات جبری تبدیل خواهد نمود و برای حل دستگاه جبری به دست آمده، از تکنیک‌های بهینه‌سازی استفاده خواهد شد. در انتها برخی آزمایش‌های عددی روی چند مسأله معیارسنج انجام می‌گیرد تا دقت و کاربردی بودن روش نشان داده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A High Accuracy Method for Solving the Differential-Algebraic Equations Arising in Mechanical Systems

نویسندگان [English]

  • Mohammad Ali Mehrpouya
  • Faezeh Kalantari
  • Nabi Chegini
Department of Mathematics, Tafresh University
چکیده [English]

While the kinematic and dynamic modeling of mechanical systems is well developed, the numerical solution of the governing equations of many of these models is still a large field under investigation. Since in any constrained mechanical system, the connections of the connected bodies restrict their relative movement, therefore the governing equations of the model usually form a system of differential-algebraic equations that includes both differential and algebraic equations. It should be noted that, unlike the analytical and numerical solution of differential equations, the analytical and numerical behavior of differential-algebraic equations is more complex and completely different from differential equations. In this paper a high accuracy method for solving the system of differential-algebraic equations arising in mechanical systems is presented. The presented method is based on the use of a pseudospectral method that will transform the solution of the system of differential-algebraic equations into the solution of a system of algebraic equations. Then, an optimization technique is utilized to facilitate solving the obtained system of algebraic equations. At the end, some numerical experiments are performed on several benchmark problems to show the accuracy and applicability of the method.

کلیدواژه‌ها [English]

  • Mechanical Systems
  • Differential-Algebraic Equations
  • Numerical Methods
  • Pseudospectral Method
  1. [1] R. Winkler, "Stochastic differential algebraic equations of index 1 and applications in circuit simulation," Journal of Computational and Applied Mathematics, vol. 163, no. 2, pp. 435-463, 2003. https://doi.org/10.1016/j.cam.2003.12.017

    [2] M. S. Soto and C. Tischendorf, "Numerical analysis of DAEs from coupled circuit and semiconductor simulation," Applied Numerical Mathematics, vol. 53, no. 2-4, pp. 471-488, 2005. https://doi.org/10.1016/j.apnum.2004.08.009

    [3] A. Steinbrecher, "Numerical solution of quasi-linear differential-algebraic equations and industrial simulation of multibody systems, PhD Thesis," Technische Universität Berlin, Berlin, 2006.

    [4] C. C. Pantelides, D. Gritsis, K. R. Morison, and R. W. H. Sargent, "The mathematical modelling of transient systems using differential-algebraic equations," Computers & Chemical Engineering, vol. 12, no. 5, pp. 449-454, 1988. https://doi.org/10.1016/0098-1354(88)85062-2

    [5] R. Gani and I. T. Cameron, "Modelling for dynamic simulation of chemical processes: the index problem," Chemical engineering science, vol. 47, no. 5, pp. 1311-1315, 1992. https://doi.org/10.1016/0009-2509(92)80252-8

    [6] H. Peng, F. Li, J. Liu, and Z. Ju, "A symplectic instantaneous optimal control for robot trajectory tracking with differential-algebraic equation models," IEEE Transactions on Industrial Electronics, vol. 67, no. 5, pp. 3819-3829, 2019. https://doi.org/10.1109/TIE.2019.2916390

    [7] P. Kunkel and V. L. Mehrmann, “Defferential-Algebraic Equations: Analysis and Numerical Solution,” European Mathematical Society, 2006.

    [8] K. E. Brenan, S. L. Campbell, and L. R. Petzold, “Numerical solution of initial-value problems in differential-algebraic equations,” Society for Industrial and Applied Mathematics, 1996.

    [9] E. Hairer and G. Wanner, “Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems,” Springer Berlin, Heidelberg, 1996.

    [10] P. Kunkel and V. Mehrmann, "Canonical forms for linear differential-algebraic equations with variable coefficients," Journal of Computational and Applied Mathematics, vol. 56, no. 3, pp. 225-251, 1994. https://doi.org/10.1016/0377-0427(94)90080-9

    [11] R. Marz, "Numerical methods for differential algebraic equations," Acta Numerica, vol. 1, pp. 141-198, 1992. https://doi.org/10.1017/S0962492900002269

    [12] F. Ghanbari and F. Ghoreishi, "Convergence analysis of the pseudospectral method for linear DAEs of index-2," International Journal of Computational Methods, vol. 10, no. 04, 2013. https://doi.org/10.1142/S0219876213500199

    [13] U. Archer and L. R. Petzold, “Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations,” Philadelphia: SIAM, 1998. https://doi.org/10.1137/1.9781611971392

    [14] C. W. Gear, "Differential-algebraic equations and index transformation," SIAM Journal on Scientific Computing, vol. 9, no. 1, pp. 39-47, 1988. https://doi.org/10.1137/0909004

    [15] E. Hairer, C. Lubich, and M. Roche, “The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods,” Berlin: Springer-Verlag, 1989. https://doi.org/10.1007/BFb0093947

    [16] N. Guzel and M. Bayram, "On the numerical solution of differential-algebraic equations with index-3," Applied Mathematics and Computation, vol. 175, no. 2, pp. 1320-1331, 2006. https://doi.org/10.1016/j.amc.2005.08.025

    [17] M. M. Hosseini, "Adomian decomposition method for solution of nonlinear differential algebraic equations," Applied Mathematics and Computation, vol. 181, no. 2, pp. 1737-1744, 2006.

    https://doi.org/10.1016/j.amc.2006.03.027

    [18] S. Ghasemi and M. M. Jafarian, "The Application of Adaptive Time Spectral Method for Analyzing Inviscid Compressible Flow around a Pitching Airfoil," Journal of Applied and Computational Sciences in Mechanics, vol. 35, no. 1, pp. 1-18, 2023. https://doi.org/10.22067/jacsm.2022.78842.1138

    [19] H. Hashemian and E. M. Hamedani, "The Effects of Winkler-Pasternak Foundation Coefficients on the Natural Frequency of Cylindrical Lattice Structures Using Galerkin Method," Journal of Applied and Computational Sciences in Mechanics, vol. 34, no. 3, pp. 19-34, 2022. https://doi.org/10.22067/jacsm.2022.73646.1069.

    [20]  A. Jafarian, S. M. Alavi Tabatabaei, and S. Shakhesi, "Calculating the Added Mass Matrix of an Airship Using Boundary Element Method," Journal of Applied and Computational Sciences in Mechanics, vol. 34, no. 2, pp. 15-28, 2022. https://doi.org/10.22067/jacsm.2022.71335.1040

    [21] B. Fornberg, “A Practical Guide to Pseudospectral Methods,” Cambridge University Press, 1998.

    1. M. Hosseini, "Pseudospectral method for numerical solution of DAEs with an error estimation," Applied Mathematics and Computation, vol. 170, no. 1, pp. 115-124, 2005. https://doi.org/10.1016/j.amc.2004.10.068

    [22] E. Babolian and M. M. Hosseini, "Reducing index, and pseudospectral methods for differential-algebraic equations," Applied Mathematics and Computation, vol. 140, no. 1, pp. 77-90, 2003.

     https://doi.org/10.1016/S0096-3003(02)00200-X

    [23] M. A. Mehrpouya and R. Salehi, "A numerical scheme basad on the collocation and optimization methods for accurate solution of sensitive boundary value problems," The European Physical Journal Plus, vol. 136, no. 909, pp. 1-23, 2021. https://doi.org/10.1140/epjp/s13360-021-01915-w

    [24] H. Eskandari and S. Hashemi, "Numerical Comparison of Shell Side Thermo-Hydraulic Characteristics of Shell and Tube Heat Exchangers with Trefoil and Segmental Baffle by Genetic Algorithm," Journal of Applied and Computational Sciences in Mechanics, vol. 35, no. 2, pp. 55-76, 2023. https://doi.org/ 10.22067/jacsm.2023.75777.1105

    [25]  F. Rabiei, M. Seidi, and Z. Seydi, "Prediction and Optimization of Hardness Value of Mold Steel in Wirecut Process based on Fuzzy Inference System," Journal of Applied and Computational Sciences in Mechanics, vol. 35, no. 1, pp. 53-70, 2023. https://doi.org/10.22067/jacsm.2022.79508.1145

    [26] P. Kazemiani-Najafabadi and E. Amiri Rad, "Thermoeconomic Optimization of a Superheated Kalina Cycle for Various Geothermal Source Temperatures in Iran," Journal of Applied and Computational Sciences in Mechanics, vol. 33, no. 1, pp. 1-16, 2022. https://doi.org/10.22067/jacsm.2022.67824.1002

    [27] K. A. Samer Amin, "Numerical Methods for Solving Differential Algebraic Equations, MSc Thesis," An-Najah National University, Nablus, 2010.

    [28]  F. Soltanian, M. Dehghan, and S. M. Karbassi, "Solution of the differential algebraic equations via homotopy perturbation method and their engineering applications," International Journal of Computer Mathematics, vol. 87, no. 9, pp. 1950-1974, 2010. https://doi.org/10.1080/00207160802545908

     [29] P. G. Thomsen and C. Bendtsen, "Numerical Solution of Differential Algebraic Equations, Technical Report," Technical University of Denmark, 1999.

     

CAPTCHA Image