##plugins.themes.bootstrap3.article.main##

فریده یزدانی فرد احسان ابراهیم نیا بجستان مهران عامری

چکیده

در این پژوهش، یک سیستم فتوولتاییک/ حرارتی با متمرکزکنندۀ سهموی- خطی شبیه‌سازی شده و اثر استفاده از نانوسیال اکسید آلومینیوم/ اتیلن‌گلیکول: آب 50:50 دارای نانوذرات مختلف پلاکتی، استوانه¬ای، تیغه¬ای و آجری‌شکل بر کارایی این سیستم از دیدگاه انرژی و اگزرژی در دو جریان آرام و مغشوش بررسی شده است. مدل پیشنهاد‌شده بااستفاده از نتایج آزمایشگاهی موجود اعتبارسنجی شده است و تطابق مناسبی بین نتایج مشاهده گردیده است. باتوجه به نتایج، استفاده از نانوسیال با نانوذرات استوانه¬ای‌شکل در جریان آرام و نانوذرات آجری‌شکل در جریان مغشوش منجر به حداکثر بازده سیستم می¬گردد. به‌علاوه، استفاده از نانوسیال در جریان آرام نسبت به جریان مغشوش برای بهبود عملکرد سیستم فتوولتاییک/ حرارتی مؤثرتر است.

جزئیات مقاله

مراجع
1. Najafi, G., Ghobadian, B., Mamat, R., Yusaf, T. and Azmi, W., "Solar energy in Iran: Current state and outlook", Renewable and Sustainable Energy Reviews, Vol. 49, pp. 931-942, (2015).
2. Shafiee, S. and Topal, E., "When will fossil fuel reserves be diminished?", Energy policy, Vol. 37, No. 1, pp. 181-189, (2009).
3. Makki, A., Omer, S. and Sabir, H., "Advancements in hybrid photovoltaic systems for enhanced solar cells performance", Renewable and Sustainable Energy Reviews, Vol. 41, No. 0, pp. 658-684, (2015).
4. Saharaf, O.Z. and Orhan, M.F., "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I–Fundamentals, design considerations and current technologies", Renewable and Sustainable Energy Reviews, Vol. 50, pp. 1500-1565, (2015).
5. Saharaf, O.Z. and Orhan, M.F., "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II–Implemented systems, performance assessment, and future directions", Renewable and Sustainable Energy Reviews, Vol. 50, pp. 1566-1633, (2015).
6. Coventry, J.S., "Performance of a concentrating photovoltaic/thermal solar collector", Solar Energy, Vol. 78, No. 2, pp. 211-222, (2005).
7. Li, M., Ji, X., Li, G., Wei, S., Li, Y. and Shi, F., "Performance study of solar cell arrays based on a trough concentrating photovoltaic/thermal system", Applied Energy, Vol. 88, No. 9, pp. 3218-3227, (2011).
8. Li, M., Ji, X., Li, G., Yang, Z., Wei, S. and Wang, L., "Performance investigation and optimization of the Trough Concentrating Photovoltaic/Thermal system", Solar Energy, Vol. 85, No. 5, pp. 1028-1034, (2011).
9. Ji, X., Li, M., Lin, W., Wang, W., Wang, L. and Luo, X., "Modeling and characteristic parameters analysis of a trough concentrating photovoltaic/thermal system with GaAs and super cell arrays", International Journal of Photoenergy, Vol. 2012, (2012).
10. Calise, F., Palombo, A., and Vanoli, L., "A finite-volume model of a parabolic trough photovoltaic/thermal collector: Energetic and exergetic analyses", Energy, Vol. 46, No. 1, pp. 283-294, (2012).
11. Chaabane, M., Charfi, W., Mhiri, H and Bournot, P., "Performance evaluation of concentrating solar photovoltaic and photovoltaic/thermal systems", Solar Energy, Vol. 98, pp. 315-321, (2013).
12. Del Col, D., Bortolato, M., Padovan, A. and Quaggia, M., "Experimental and numerical study of a parabolic trough linear CPVT system", Energy Procedia, Vol. 57, pp. 255-264, (2014).
13. Mahian, O., Kianifar, A., Kalogirou, S.A., Pop, I. and Wongwises, S., "A review of the applications of nanofluids in solar energy", International Journal of Heat and Mass Transfer, Vol. 57, No. 2, pp. 582-594, (2013).
14. Mahian, O., Kianifar, Kleinstreuer, C., Al-Nimr, M.A, A., Kalogirou, Pop, I., Sahin, A.Z. and Wongwises, S., "A review of entropy generation in nanofluid flow", International Journal of Heat and Mass Transfer, Vol. 65, pp. 514-532, (2013).
15. Cui, Y. and Zhu, Q., "Study of Photovoltaic/Thermal Systems with MgO-Water Nanofluids Flowing over Silicon Solar Cells", In Proceedings of Asia-Pacific Power and Energy Engineering Conference (APPEEC), Shanghai,China (2012) .
16. Sardarabadi, M., Passandideh-Fard, M. and Heris, S.Z., "Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)", Energy, Vol. 66, pp. 264-272, (2014).
17. Karami, N. and Rahimi, M., "Heat transfer enhancement in a hybrid microchannel-photovoltaic cell using Boehmite nanofluid", International Communications in Heat and Mass Transfer, Vol. 55, pp. 45-52, (2014).
18. Sardarabadi, M. and Passandideh-Fard, M., "Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT)", Solar Energy Materials and Solar Cells, Vol. 157, pp. 533-542, (2016).
19. Rejeb, O., Sardarabadi, M., Ménézo, C., Passandideh-Fard, M., Dhaou, M.H. and Jemni, A., "Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system", Energy Conversion and Management, Vol. 110, pp. 367-377, (2016).
20. Xu, Z. and Kleinstreuer, C., "Concentration photovoltaic–thermal energy co-generation system using nanofluids for cooling and heating", Energy Conversion and Management, Vol. 87, pp. 504-512, (2014).
21. Xu, Z. and Kleinstreuer, C., "Computational analysis of nanofluid cooling of high concentration photovoltaic cells", Journal of Thermal Science and Engineering Applications, Vol. 6, No. 3, pp. 031009-031009-9, (2014).
22. Jing, D., Hu, Y., Liu, M., Wei, J. and Guo, L., "Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system", Solar Energy, Vol. 112, pp. 30-40, (2015).
23. Radwan, A., Ahmed, M. and Ookawara, S., "Performance enhancement of concentrated photovoltaic systems using a microchannel heat sink with nanofluids", Energy Conversion and Management, Vol. 119, pp. 289-303, (2016).
24. Yazdanifard, F., Ebrahimnia-Bajestan, E. and Ameri, M., "Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime", Renewable Energy, Vol. 99, pp. 295-306, (2016).
25. Pak, B.C. and Cho, Y.I., "Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles", Experimental Heat Transfer an International Journal, Vol. 11, No. 2, pp. 151-170, (1998).
26. Xuan, Y. and Roetzel, W., "Conceptions for heat transfer correlation of nanofluids", International Journal of Heat and Mass Transfer, Vol. 43, No. 19, pp. 3701-3707, (2000).
27. Timofeeva, E.V., Routbort, J.L. and Singh, D., "Particle shape effects on thermophysical properties of alumina nanofluids", Journal of Applied Physics, Vol. 106, No. 1, pp. 014304, (2009).
28. Mahian, O., Kianifar, A., Heris, S. Z. and Wongwises, S., "First and second laws analysis of a minichannel-based solar collector using boehmite alumina nanofluids: effects of nanoparticle shape and tube materials", International Journal of Heat and Mass Transfer, Vol. 78, pp. 1166-1176, (2014).
29. Shah, R.K., London, A.L., Irvine, T.F. and Hartnett, J.P., "Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data", Elsevier Science, (2014).
30. Bergman, T.L., Lavine, A.S. and Incropera, F.P., "Fundamentals of Heat and Mass Transfer, 7th Edition", John Wiley & Sons, New York, (2011)
ارجاع به مقاله
یزدانی فردف., ابراهیم نیا بجستانا., & عامریم. (۱۳۹۷-۰۳-۰۲). اثر شکل نانوذرات بر یک سیستم فتوولتاییک/ حرارتی نانوسیالی دارای متمرکز‌کنندۀ سهموی‌ خطی. علوم کاربردی و محاسباتی در مکانیک, 29(2), 41-56. https://doi.org/10.22067/fum-mech.v29i2.62148
نوع مقاله
علمی پژوهشی