##plugins.themes.bootstrap3.article.main##

سعید جعفری پناه فتح اله امی سید سعید خضرپور

چکیده

هدف اصلی از انجام پژوهش حاضر تحلیل پارامترهای عملکردی و شبیه‌سازی موتور توربوفن پی دبلیو 615 اف، در دو حالت با محفظۀ احتراق ثانویه و بدون آن می‌باشد و برای اعتبارسنجی آن از نرم¬افزار تجاری گس¬ترب و جی‌اس‌پی استفاده شده است. درواقع سیستم پیش‌رانش در تعیین مأموریت و رژیم پروازی وسیلۀ پرنده، اهمیت به¬سزایی دارد. این سیستم، تأمین‌کنندۀ نیروی رانش یک هواپیما می¬باشد. درابتدا یک موتور توربینی انتخاب و سپس شبیه¬سازی می¬شود که بتواند تراستی معادل 35/6 کیلونیوتن تولید نماید. درادامه، روشی برای تحلیل عملکرد نقطۀ طراحی و نقاط خارج از طرح موتورهای توربوفن دو‌محورۀ جریان مخلوط‌نشده ارائه شده است؛ همچنین ابزاری براساس روش مقیاس به‌منظور تولید منحنی مشخصۀ کمپرسور و فن ارائه شده است. به‌منظور مدل¬سازی عملکرد موتور از روش¬ حلقه¬های تودرتو استفاده شده است. عملکرد اجزای موتور با بهره¬گیری از نمودارهای عملکرد، معادلات ترمودینامیکی و دینامیک گازی مدل شده است. باتوجه به این‌که روند مدل¬سازی ریاضی موتورهای دو‌محوره تاحدودی پیچیده است، در ابتدا روند شبیه¬سازی موتورهای دو‌محوره ارائه شده است و درادامه عملکرد یک موتور توربوفن دو‌محورۀ جریان مخلوط‌نشده در نقطۀ طراحی و نقاط خارج از طراحی ارائه شده است و نمودارهای حاصل مورد بررسی قرار گرفته‌اند. نتایج نشان می¬دهد، سیکل¬هایی که از وجود محفظۀ احتراق ثانویه سود می¬برند به‌طور چشم‌گیری موجب افزایش تراست ویژه، کاهش آلاینده¬های خروجی از محفظۀ احتراق اصلی و افزایش کار خروجی مخصوص از توربین کم¬فشار می¬شوند.

جزئیات مقاله

مراجع
[1] 1. Hamdan, Z., Ebaid, S.Y., "Modeling and simulation of gas turbine engine for power generation", Journal of Engineering for Gas Turbines and Power, Vol. 128, pp. 302-311, (2014).
2. Tavakolpour-Saleh, A.R., Nasib, S.A.R., Sepasyan, A., Hashemi, S.M., ”Parametric and nonparametric system identification of an experimental turbojet engine”, Aerospace Science and Technology, Vol. 43, pp. 21-29, (2015).
3. Korakianitis, T. and Wilson, D.G., “Models for Predicting the Performance of Bryton-Cycle Engines”, Journal of Engineering for Gas Turbines and Power Transactions of ASME, Vol. 116, pp.381-388, April (1994).
4. Kurzke, J. and Riegler, C., “A New Compressor Map Scaling Procedure for Preliminary Conceptual Design of Gas Turbine”, ASME Paper No. 2000-GT-0006, pp. V001T01A006, ISBN: 978-0-7918-7854-5, May 8-11 ( 2000).
5. Domitrovid, A., Bazijanac, E., and Stojkovic, V., “Mathematical Model For Prediction Of Single-Spool Turbojet Engine Off-Design Performance”, First Simposyum Of Explosive Materials, Weapons And Military Techonology OHRID, September 25-28, (2002).
6. Kim, J. H., Kim, T. S., Sohn, J. H. and Ro, S. T., “Comparative Analysis of Off Design Performance Characteristics of Single and Two-Shaft Turbines”, ASME Turbo Expo 2002: Power for Land, Sea, and Air, Paper No. GT2002-30132, Vol. 2, pp. 509-516, (2002).
7. Liew, K.H., Urip, E., Yang, S.L “Parametric Cycle Analysis of a Turbofan Engine with an Interstage Turbine Burner”, Journal of Propulsion and Power, Vol. 21, pp. 546-551, No. 3 (2005).
8. Liew, K.H., Urip, E., Yang, S.L. And Siow, Y.K. “A Complete Parametric Cycle Analysis of a Turbofan With Interstage Turbine Burner”, 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, Jan 6-9 (2003).
9. Sanghi, V., Lakshmanan, B.K. and Sundararajan, V., “Digital Simulator for Steady-State Performance Prediction of Military Turbofan Engine”, Journal of Propulsion and Power, Vol. 14, pp. 74-81, (1998).
10. Gobran, M.H., “Off-design performance of solar Centaur-40 gas turbine engine using Simulink”, Aerospace Science and Technology, Vol. 2, pp. 285-298, (2013).
11. Yang, C., Huang, Z., Yang, Z., Ma, X., “Analytical Off-design Characteristics of Gas Turbine-Based CCHP System”, The 7th International Conference on Applied Energy, Vol. 75, pp. 1126-1131, March 28-31 (2015).
12. Yonghong, W., "A New Method of Predicting the Performance of Gas Turbine Engines", Journal of Engineering for Gas Turbines and Power Transactions of ASME, Vol. 113, pp. 106-111, April ( 1991).
13. Kim, J.H., Kim, T.S., Sohn, J.H., Ro, S.T., "Comparative Analysis of off Design Performance Characteristics of Single and Two-Shaft Turbines", ASME Paper, 95-GT-334, Vol. 2, pp. 509-516, (2002).
14. Oates, G.C., "The Aerothermodynamics of Gas Turbine and Rocket Propulsion", AIAA Education Series, American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia, ISBN 1-56347-241-4, pp. 285-291 (1997).
15. Gilani, S. I., Baheta, A. T., majid, M. A. A., "Thermodynamic approach to determine a gas turbine components design data and scaling method for performance map generation", 1st International Conference on Plant Equipment and Reliability (CIPER), Malaysia, March 27-28 ( 2008).
16. Mattingly, J.D., Heiser, W.H., Pratt, D.T., "Aircraft Engine Design", AIAA Education Series, American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia, ISBN 1-56347-538-3, pp. 210-218 (2002).
ارجاع به مقاله
جعفری پناهس., امیف. ا., & خضرپورس. س. (۱۳۹۷-۰۳-۰۲). شبیه¬سازی کاربرد محفظۀ احتراق ثانویۀ موتور توربوفن در خارج از نقطۀ طراحی. علوم کاربردی و محاسباتی در مکانیک, 29(2), 1-20. https://doi.org/10.22067/fum-mech.v29i2.62023
نوع مقاله
علمی پژوهشی