شبیه‬ سازی عددی تأثیر نوسان جت برخوردی سینوسی بر انتقال حرارت از سطح مقعر استوانه‬ ای

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه سمنان

چکیده

این مقاله در مورد تحلیل عددی جریان و انتقال حرارت آشفته در جت برخوردی با نوسان سینوسی به سطح مقعر استوانه ای بحث می کند. در این راستا معادلات متوسط گیری شده برای جریان تراکم ناپذیر آشفته در حالت غیردائم به همراه مدل آشفتگی RNG k-ε در یک فضای محاسباتی سه بعدی حل شده است. تاثیر فرکانس نوسان، دامنه نوسان و عدد رینولدز بر توزیع متوسط زمانی عدد ناسلت سطح، مورد بررسی قرار گرفته است. نتایج به دست آمده نشان می-دهد که در مقایسه با جت پایا، استفاده از جت نوسانی در محدوده فرکانس 50 تا 200 هرتز باعث افزایش میانگین انتقال حرارت از سطح می شود. همچنین با افزایش عدد رینولدز از 10000 به 40000 و افزایش دامنه نوسانات از 4/0 تا 1 متوسط زمانی عدد ناسلت افزایش می یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Simulation of the Effects of Sinusoidal Pulsed Impinging Jet on Heat Transfer from the Concave Cylindrical Surface

نویسندگان [English]

  • Ali Hajimohammadi
  • Mehran Rajabi Zargarabadi
Semnan University
چکیده [English]

In this study, the numerical analysis of turbulent flow and heat transfer of oscillating impinging circular jet on concave cylindrical surface has been investigated. In this way, the averaged Navier-Stocks equations for turbulent incompressible flow in an unsteady state with RNG k-ε turbulent model and in 3D computational space were solved. The effects of oscillation frequency, amplitude of oscillation and Reynolds number on Time-averaged Nusselt number Distribution in concave surface were studied. The obtained results show that applying the pulsating jet in the range of 50 to 200 Hz can increasing heat transfer from concave surface in comparison with the steady jet. Furthermore, increasing Re number from 10000 to 40000 and amplitude of oscillation from 0.4 to 1, leads to the increase of time-averaged Nusselt number..

کلیدواژه‌ها [English]

  • Turbulent Flow
  • Sinusoidal Waveform
  • Impinging Pulsated Jet
  • Nusselt Number
  • Concave Surface
1. Chupp, R.E., Helms, H.E., McFadden, P.W. and Brown, T.R., "Evaluation of Internal Heat-Transfer Coefficients for Impingement Cooled Turbine Airfoils", J. Aircraft, Vol. 6, No. 3, pp. 203-208, (1969).
2. Sailor, D.J., Rohli, D.J. and Qianli, F., "Effect of Variable Duty Cycle Flow Pulsations on Heat Transfer Enhancement for an Impinging air jet", International Journal of Heat and Fluid Flow, Vol. 20, pp. 574-580, (1999).
3. Camci, C. and Herr, F., "Forced Convection Heat Transfer Enhancement using a Self-Oscillating Impinging Planar Jet", ASME J. Heat Transfer, Vol. 124, pp. 770-782, (2002).
4. Souris, N., Liakos, H. and Founti, M., "Impinging jet cooling on concave surfaces", AIChE J, Vol. 50, No. 8, pp. 1672–1683, (2004).
5. Fenot, M., Vullierme, J.J. and Dorignac, E., "Local Heat Transfer Due to Several Configurations of Circular Air Jets Impinging on a Flat Plate with and without Semi-confinement", International Journal of Thermal Sciences, Vol. 44, No. 4, pp. 665-675, (2005).
6. Rajabi Zargarabadi, M., Rezaei, E. and Yousefi-Lafouraki, B., "Numerical analysis of turbulent flow and heat transfer of sinusoidal pulsed jet impinging on an asymmetrical concave surface", Applied Thermal Engineering, Vol. 128, No. 1, pp. 578-585, (2018).
7. Hofmann, H.M., Movileanu, D.L., Kind, M. and Martin, H., "Influence of a Pulsation on Heat Transfer and Flow Structure in Submerged Impinging Jets", International Journal of Heat and Mass Transfer, Vol. 50, pp. 3638-3648, (2007).
8. Fenot, M., Vullierme, J.–J. and Dorignac, E., "An Experimental Study on Hot Round Jets Impinging on Concave Surface", International Journal of Heat and Fluid Flow, Vol. 29, No. 4, pp. 945-956, (2008).
9. Zulkifli, R., Sopian, K., Abdullah. S. and Takriff, M.S., "Comparison of Local Nusselt Number between Steady and Pulsating Jet at Different Jet Reynolds Number", WSEAS Transactions on Environment and Development, Vol. 5, No. 5, pp. 384-393, (2009).
10. Bazdidi-Tehrani, F., Karami, M. and Jahromi, M., "Unsteady flow and heat transfer analysis of an impinging synthetic jet", Journal Heat and Mass Transfer, Vol. 4, Issue 11, pp. 1363-1373, (2011).
11. Mohammadpour, J., Rajabi-Zargarabadi, M. and Mujumdar, A.S., "Effect of intermittent and sinusoidal pulsed flows on impingement heat transfer from a concave surface", International Journal of Thermal Sciences, Vol. 76, pp. 118-127, (2014).
12. محمدپور، جواد، رجبی زرگرآبادی، مهران، احمدی، هادی، «تحلیل عددی جریان و انتقال حرارت آشفته در جت نوسانی برخوردی به سطح مقعر»، مهندسی مکانیک مدرس، ش 13، صص 129-137، (2013).
13. Esmailpour, K., Hosseinalipour, M., Bozorgmehr, B. and Mujumdar, A. "A Numerical Study of Heat Transfer in a Turbulent Pulsating Impinging Jet", the Canadian Journal of Chemical Engineering, Vol. 93, pp. 959-96, (2015).
14. Mohammadpour, J., Zolfagharian, M.M., Mujumdar, A.S. and Rajabi-Zargarabadi, M., "Heat Transfer under Composite Arrangement of Pulsed and Steady Turbulent Submerged Multiple Jets Impinging on a Flat Surface", International Journal of Thermal Science, Vol. 86, pp. 139-147, (2014).
15. طریقی، رضا و رجبی زرگرآبادی، مهران، «شبیه‌سازی عددی تأثیر مکان استقرار جت‬های برخوردی بر انتقال حرارت جابه‬جایی از سطح مقعر استوانه‌ای»، علوم کاربردی و محاسباتی در مکانیک، ش 27(2)، صص 71-86، (2016).
16. Taghinia, J., Rahman, M.D. and Timo Siikonen, M., "CFD study of turbulent jet impingement on curved surface", Chinese Journal of Chemical Engineering, Vol. 24, Issue 5, pp. 588-596, (2016).
17. ANSYS Fluent16.0, User Guide, Ansys Inc., (2016).
18. Behera, R.C., Dutta, P. and Srinivasan, K., "Numerical study of interrupted impinging jets for cooling of electronics", IEEE Transactions on Components and Packaging Technologies, Vol. 30, pp.
275-284, (2007).
19. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. and Speziale, C.G., "Development of Turbulence Models for Shear Flows by Double Expansion Technique", Journal Phys Fluid, Vol. 4, No. 7, pp. 1510-1520, (1992).
20. Sharif, M.A.R. and Mothe, K.K, "Parametric Study of turbulent Slot-Jet Impingement Heat Transfer from Concave Cylindrical Surfaces", International Journal of Thermal Science, Vol. 49. No. 2, pp. 428-442, (2010).
21. Parham, K.E., Esmaeilzadeh, U., Atikol, L.B. and Aldabagh, Y.A. "Numerical Study of Turbulent Opposed Impinging Jets Issuing from Triangular Nozzles with Different Geometries", Heat and Mass Transfer, Vol. 47, pp. 427-437, (2011).
22. Liakos, H.H., Keramida, E.P., Founti, M.A. and Markatos, N.C., "Heat and Mass Transfer Study of Impinging Turbulent Premixed Flames", Heat and Mass Transfer, Vol. 38, No. 4-5, pp. 425-432, (2002).
23. Martin, E.L., Wright, L.M. and Crites, D.C., "Computational investigation of jet impingement on Turbine blade leading edge cooling with engine-like temperatures", International Conference Gas Turbine Institute, Denmark, June 11-15, (2012).
24. Elebiary, K. and Taslim, M.E., "Experimental/ Numerical crossover jet impingement in an airfoil Leading edge cooling channel", Journal of Turbo machinery, Vol. 135, No. 3, pp. 1-10, (2013).
25. Yang, Y.T., Wei, T.C. and Wang, Y.H., "Numerical study of turbulent slot jet impingement cooling on a semi-circular concave surface", International Journal of Heat and Mass Transfer, Vol. 54, pp. 482-489, (2011).
26. Xie, Y., Li, P., LAN, J. and Zhang, D., "Flow and heat transfer characteristics of single jet impinging on dimpled surface", Journal Heat Transfer, Vol. 135, pp. 356-361, (2013).
27. Yang, L., Ren, J., Jiang, H. and Ligrani, P., "Experimental and numerical investigation of unsteady Impingement cooling within a blade leading edge passage", International Journal of Heat and Mass Transfer, Vol. 71, pp. 57-68, (2014).
28. Mladin, E.C. and Zumbrunen, D.A., "Local Convective Heat Transfer to Submerged Pulsating Jets". Int. J. Heat Mass Transfer, Vol. 40, pp. 3305-3321, (1997).
29. Xu, P., Mujumdar, A.S., Poh, H.L. and Yu, B., "Heat Transfer under a Puksed Slot Turbulent Impinging Jet at Large Temperature Differences", Thermal Science, Vol. 14, No. 1, pp. 271-281, (2010).
30. Gilrd, V. and Brizzi, L.–E., "Slot jet impinging on a concave curved wall", Journal of Fluid Engineering, Vol. 127, pp. 595-603, (2005).
31. Zulkifli, R., Sopian, K.S., Abdullah, S. and Sobri Takriff, M., "Comparison of Local Nusselt Number for Steady and Pulsating Circular Jet at Reynolds Number of 16000", European Journal of Scientific Research, Vol. 29, No. 3, pp. 369-378, (2009).
CAPTCHA Image