ارتعاشات اجباری غیرخطی صفحۀ مدرج تابعی مگنتو-الکترو-الاستیک مستطیلی‌شکل براساس تئوری تغییرشکل برشی مرتبۀ سوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه بوعلی سینا

2 دانشگاه بوعلی سینا همدان

چکیده

در این مقاله ارتعاشات اجباری عرضی غیرخطی تحت نیروی تحریک هارمونیک جانبی یک صفحۀ مدرج تابعی مگنتو-الکترو-الاستیک مستطیلی‌شکل ساخته شده از پیزوالکتریک BaTiO3 و مگنتواستریکتیو CoFe2O4، با شرایط مرزی تکیه‌گاه ساده بررسی شده است. تغییرات خواص از پایین به بالا فرض شده است، یعنی سطح بالای ورق غنی از پیزوالکتریک است، در حالی که سطح پایین ورق غنی از مگنتواستریکتیو است و خواص مواد در جهت ضخامت مطابق قانون توزیع توانی درجه‌بندی شده است. معادلات حرکت براساس تئوری برشی مرتبه سوم رِدی به‌دست آمده­اند. همچنین معادلات ماکسول در حالت الکترواستاتیک و مگنتواستاتیک برای مدل‌سازی رفتار الکتریکی و مغناطیسی به‌کار برده شده­اند. سپس معادلات دیفرانسیل جزئی غیرخطی به‌دست آمده با استفاده از روش گلرکین به پنج معادلۀ دیفرانسیل معمولی غیرخطی کوپل شده تبدیل شده­اند. این معادلات دیفرانسیل معمولی غیرخطی به یک معادلۀ دیفرانسیل که شامل ترم­های غیرخطی سفتی و اینرسی و ترم­های غیرخطی مرتبه دو و سه است کاهش یافته­اند. برای حل معادلۀ به‌دست آمده، از تئوری اغتشاشات استفاده شده است و سپس نتایج به‌دست آمده برای فرکانس طبیعی خطی با نتایج موجود بـرای ورق­های همسانگرد و ورق­هـای پیزوالاستیک همسانگرد مقایسه شده­اند و مطابقت خوبی میان نتایج این پژوهش و نتایجی که قبلاً منتشر شده­اند مشاهده گردیده­است. در تحلیل ارتعاشات اجباری، تشدیدهای اولیه، سوپرهارمونیک مطالعه شده­است و معادلۀ پاسـخ فرکانسـی آن به‌دست آمده است. همچنین باتوجه به اهمیت تشدید اولیه، پایداری آن نیز بررسی شده است. نیروی تحریک خارجی در این حالت، نیروی تحریک مکانیکی با دامنـۀ ثابـت و به‌صورت هارمونیک در حوزۀ زمان در نظر گرفته شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Nonlinear Forced Vibration of Functionally Graded Magneto-Electro-Elastic Rectangular Plate based on the Third Order Shear Deformation Theory

نویسندگان [English]

  • Ramin Mantashloo 1
  • alireza shooshtari 2
1 Bu-Ali Sina University
2 Bu-Ali Sina University
چکیده [English]

In this paper, nonlinear vibration of the functionally graded rectangular plates made of piezoelectric BaTiO3 and magnetostrictive CoFe2O4, whit simply supported boundary condition has been investigated. It is assumed that the composition is varied from the bottom surfaces to top surface, i.e., the top surface of the plate is piezoelectric-rich, whereas the bottom surface is magnetostrictive-rich. In addition, material properties are graded along the thickness according to volume fraction power-law distribution. Based on the Reddy’s third-order share deformation plate theory, the governing equations of motion, whereas Maxwell equations for electrostatics and magnetostatics are used to model the electric and magnetic behavior. Then, the nonlinear partial differential equations of motion are transformed into five coupled nonlinear ordinary differential equations by using the Galerkin method. Afterward, the obtained coupled ordinary differential equations are reduced to a single nonlinear differential equation which include nonlinear inertia and stiffness terms with quadratic and cubic nonlinear terms. A perturbation method is used to solve the equation of motion analytically. The results for natural frequency are compared with the available results for isotropic, laminated and piezo-laminated plates and good agreement is found between the results of present study with the results of previously published papers. In the forced vibration, primary, super-harmonic resonances are studied and the frequency response equation has been obtained. Because of the importance of the primary resonance, the stability of the steady-state motion is investigated for the primary resonance, The applied external force is assumed to be harmonic in time with a constant amplitude.

کلیدواژه‌ها [English]

  • Functionally graded smart plate
  • Third Order Shear Deformation Theory
  • Gauss’s laws
  • perturbation method
  • force vibration
1. Ferreira, A., Batra, R., Roque, C., Qian, L. and Jorge, R., "Natural frequencies of functionally graded plates by a meshless method", Composite Structures, Vol. 75, No. 1, pp. 593-600 (2006).
2. Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R., "A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates", International Journal of Mechanical Sciences, Vol. 53, No. 1, pp. 11-22 (2011).
3. Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R., "Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure", Composite Structures, Vol. 93, No. 2, pp. 722-735 (2011).
4. Allahverdizadeh, A., Oftadeh, R.,Mahjoob, M. and Naei, M., "Homotopy perturbation solution and periodicity analysis of nonlinear vibration of thin rectangular functionally graded plates", Acta Mechanica Solida Sinica, Vol. 27, No. 2, pp. 210-220 (2014).
5. Malekzadeh, P. and Alibeygi Beni, A., "Nonlinear Free Vibration of In-Plane Functionally Graded Rectangular Plates", Mechanics of Advanced Materials and Structures, Vol. 22, No. 8, pp. 633-640, (2015).
6. Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P., Anh, V.M. and Quang V.D., "Nonlinear vibration and dynamic response of imperfect eccentrically stiffened shear deformable sandwich plate with functionally graded material in thermal environment", Journal of Sandwich Structures and Materials, pp. 1099636215602142, (2015).
7. Reddy, J.N., "On laminated composite plates with integrated sensors and actuators", Engineering Structures, Vol. 21, No. 7, pp. 568-593 (1999).
8. Liew, K., Yang, J. and Kitipornchai S., "Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading", International Journal of Solids and Structures, Vol. 40, No. 15, pp. 3869-3892, (2003).
9. Cupiał, P., "Three-dimensional natural vibration analysis and energy considerations for a piezoelectric rectangular plate", Journal of sound and vibration, Vol. 283, No. 3, pp. 1093-1113, (2005).
10. Shen, H.-S., "Postbuckling of axially loaded FGM hybrid cylindrical shells in thermal environments", Composites science and technology, Vol. 65, No. 11, pp. 1675-1690, (2005).
11. Chen, X., Zhao, Z. and Liew, K.M., "Stability of piezoelectric FGM rectangular plates subjected to non-uniformly distributed load, heat and voltage", Advances in Engineering software, Vol. 39, No. 2, pp. 121-131, (2008).
12. Fakhari, V.,Ohadi, A. and Yousefian, P., "Nonlinear free and forced vibration behavior of functionally graded plate with piezoelectric layers in thermal environment", Composite Structures, Vol. 93, No. 9, pp. 2310-2321, (2011).
13. Kumar, A. and Panda S., "Chakraborty D., Piezo-viscoelastically damped nonlinear frequency response of functionally graded plates with a heated plate-surface", Journal of Vibration and Control, pp. 1077546314532672, (2014).
14. Kumar, A., Panda, S. and Chakraborty, D., "Harmonically exited nonlinear vibration of heated functionally graded plates integrated with piezoelectric composite actuator", Journal of Intelligent Material Systems and Structures, Vol. 26, No. 8, pp. 931-951, (2015).
15. Shen, H.-S., "Nonlinear bending analysis of unsymmetric cross-ply laminated plates with piezoelectric actuators in thermal environments", Composite Structures, Vol. 63, No. 2, pp. 167-177 (2004).
16. Huang, X.-L. and Shen, H.-S., "Nonlinear free and forced vibration of simply supported shear deformable laminated plates with piezoelectric actuators", International Journal of Mechanical Sciences, Vol. 47, No. 2, pp. 187-208, (2005).
17. Shen, H.S., "Nonlinear thermal bending response of FGM plates due to heat conduction", Composites Part B: Engineering, Vol. 38, No. 2, pp. 201-215, (2007).
18. Pan, E., "Exact solution for simply supported and multilayered magneto-electro-elastic plates", Journal of Applied Mechanics, Vol. 68, No. 4, pp. 608-618, (2001).
19. Chang, T.P., "Deterministic and random vibration analysis of fluid-contacting transversely isotropic magneto-electro-elastic plates", Computers & Fluids, Vol. 84, pp. 247-254, (2013).
20. Lang, Z. and Xuewu, L., "Buckling and vibration analysis of functionally graded magneto-electro-thermo-elastic circular cylindrical shells", Applied Mathematical Modelling, Vol. 37, No. 4, pp. 2279-2292, (2013).
21. Chen, J., Heyliger, P. and Pan, E., "Free vibration of three-dimensional multilayered magneto-electro-elastic plates under combined clamped/free boundary conditions", Journal of Sound and Vibration, Vol. 333, No. 17, pp. 4017-4029, (2014).
22. Li, Y. and Zhang, J., "Free vibration analysis of magnetoelectroelastic plate resting on a Pasternak foundation", Smart Materials and Structures, Vol. 23, No. 2, pp. 025002, (2013).
23. Razavi, S. and Shooshtari, A., "Free vibration analysis of a magneto-electro-elastic doubly-curved shell resting on a Pasternak-type elastic foundation", Smart Materials and Structures, Vol. 23, No. 10, pp. 105003, (2014).
24. Ansari, R., Gholami, R. and Rouhi, H., "Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory", Composite Structures, Vol. 126, pp. 216-226, (2015).
25. Ansari, R., Hasrati, E., Gholami, R. and Sadeghi, F., "Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto–electro–thermo elastic nanobeams", Composites Part B: Engineering, Vol. 83, pp. 226-241, (2015).
26. Bhangale, R.K. and Ganesan, N., "Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method", Journal of Sound and Vibration, Vol. 294, No. 4, pp. 1016-1038, (2006).
27. Li, J.Y., "Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials", International Journal of Engineering Science, Vol. 38, No. 18, pp. 1993-2011, )2000(.
28. Reddy, J.N., Mechanics of laminated composite plates and shells: theory and analysis: CRC press, (2004).
29. Pan, E. and Han, F., "Exact solution for functionally graded and layered magneto-electro-elastic plates", International Journal of Engineering Science, Vol. 43, No. 3, pp. 321-339, (2005).
30. Moita, J.M.S., Soares, C.M.M. and Soares, C.A.M., "Analyses of magneto-electro-elastic plates using a higher order finite element model", Composite structures, Vol. 91, No. 4, pp. 421-426, (2009).
31. Nayfeh A.H. and Mook D.T., "Nonlinear oscillations", John Wiley & Sons, (2008).
32. Mantashloo R. and Shooshtari A. , "Nonlinear Transverse Vibration of FGM Magneto-elctro elastic rectangular plates based on third order shear deformation theory", M. Sc. Thesis, Bu-Ali Sina University, (2015).
CAPTCHA Image