شبیه‌سازی عددی تأثیر مکان استقرار جت‌های برخوردی بر انتقال حرارت جابه‌جایی از سطح مقعر استوانه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه سمنان

چکیده

این مقاله در مورد تأثیر جابه جایی افقی جت ها بر انتقال حرارت جابه‌جایی از سطح مقعر استوانه ای بحث می کند. در این راستا معادلات متوسط‌گیری شده برای جریان تراکم ناپذیر آشفته در حالت دایم به‌همراه دو مدل آشفتگی رایج و یک مدل رینولدز پایین به‌همراه تصحیح‌کنندۀ یاپ، در یک فضای محاسباتی سه‌بعدی حل شده اند. نتایج نشان می دهد که اعمال تصحیح یاپ به‌طور قابل ملاحظه‌ای منجر به اصلاح تخمین بیشینۀ عدد ناسلت در نقطۀ برخورد می‌شود. نتایج به‌دست آمده نشان می دهد که با کاهش فاصلۀ مرکز جت ها تا لبۀ خروجی صفحۀ مقعر بیشینه مقدار عدد ناسلت به‌سمت جریان بالادستی منتقل می‌شود و با نزدیک شدن جریان اصلی جت به ناحیۀ چرخشی ایجاد شده در بالا دست جریان، انرژی جنبشی آشفتگی در این ناحیه افزایش می‌یابد و همین امر سبب افزایش عدد ناسلت در ناحیۀ برخورد شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Simulation of the Effect of the Location of Impinging Jets on the Convective Heat Transfer from a Cylindrical Concave Surface

نویسندگان [English]

  • Reza Tarighi
  • Mehran Rajabi Zargarabadi
Semnan University
چکیده [English]

This paper discusses the effect of the horizontal movement of impinging jets on the convective heat transfer from a cylindrical concave surface. In this way, the averaged Navier-Stokes equations for turbulent incompressible flow in a steady state considering two prevalent turbulence models and a Low-Re model with the Yap correction in the 3D computational space were solved. Results indicate that the Yap correction significantly improves the over-prediction of Nusselt number in the impingement zone. The results show that the decrease in the distance of the center of the jets to the outlet edge of the concave surface leads to the transfer of the maximum amount of the Nusselt number to the upstream flow, and the approach of the main flow of the jet to the recirculation region formed in the upstream flow results in the increase in the turbulent kinetic energy of this area and the Nusselt number in the stagnation point.

کلیدواژه‌ها [English]

  • Impingement Heat Transfer
  • Turbulent Flow
  • Yap correction
  • Nusselt Number
1. Chupp, R. E., Helms, H. E., McFadden, P. W., Brown, T. R., "Evaluation of internal heat transfer coefficients for impingement cooled turbine airfoils", AIAA Journal of Aircraft, Vol. 6, pp. 203-208, (1969).
2. Bunker, R. S., Metzeger, D. E., "Local heat transfer in internally cooled turbine airfoil leading edge regoins": part 1– impingement cooling without film coolant extraction, ASME Journal of Turbomachinery, Vol. 112, pp. 451-458, (1990).
3. Lee, D. H, Chung, Y. S., Won, S. Y., "The effect of concave surface curvature on heat transfer from a fully developed round impinging jet", International Journal of Heat and Mass Transfer, Vol. 42, pp. 2489-2497, (1990).
4. Fenot, M., Vullierme, J. –J., Dorignac, E., "Local heat transfer due to several configurations of circular air jets impinging on a flat plate with and without semi-confinement", International Journal of Thermal Sciences, Vol. 44, pp. 665-675, (2005).
5. Fenot, M., Vullierme, J. –J., Dorignac, E., "An experimental study on hot round jets impinging a concave surface", International Journal of Heat And Fluid Flow, Vol. 29, pp. 945-956, (2008).
6. Lee, C. H., Lim, K. B., Lee, S. H., Yoon, Y. J., Sung, N. W., "A study of the heat transfer characteristics of turbulent round round jet impinging on an inclined concave surface liquid crystal transient method", Experimental Thermal and Fluid Science Vol. 31, pp. 559-565,( 2007).
7. Mohammadpour, J., Rajabi-Zargarabadi, M., Mujumdar, A. S., "Effect of intermittent and sinusodial pulsed flows on impingement heat transfer from a concave surface", International Journal of Thermal Sciences, Vol. 76, pp. 118-127, (2014).
8. محمّدپور. جواد، رجبی زرگرآبادی. مهران، احمدی. هادی، " تحلیل عددی جریان و انتقال حرارت آشفته در جت نوسانی برخوردی به سطح مقعر"، ماهنامه علمی پژوهشی مهندسی مکانیک مدرس، دوره. 13، شماره. 1، صفحه. 129-137، (1392).
9. Bazdidi Tehrani, F., Karami, F. and Jahromi, M., "Unsteady flow and heat transfer analysis of an impinging synthetic jet", International Journal of Heat and Mass Transfer, Vol. 47, No. 11, pp. 1363-1373, (2011).
10. Sharif, M.A.R. and Mothe, K.K. "Evaluation of Turbulence Models in the Prediction of Heat Transfer Due to Slot Jet Impingement on Plane and Concave Surfaces", International Journal of Computation and Methodology, Vol. 55, pp. 273-294, (2009).
11. Choi, M., Yoo, H.S., Yang, G., Lee, J.S. and Sohn, D.K., "Measurement of impinging jet flow and heat transfer on a semi-circular concave surface", International Journal of Heat and Mass Transfer, Vol. 43, pp. 1811-1822, (2000).
12. Rama Kumar, B.V.N. and Prasad, B.V.S.S., "Computational flow and heat transfer of a row of circular jets impinging on a concave surface", International Journal of Heat and Mass Transfer, Vol. 44, pp. 667-678, (2007).
13. Martin, E.L., Wright, L.M. and Crites, D.C. "Impingement heat transfer enhancement on a cylindrical leading edge model with varying jet temperatures", Journal of Turbomachinery, Vol. 135, (2012).
14. Martin, E.L., Wright, L.M. and Crites, D.C., "Computational investigation of jet impingement on turbine blade leading edge cooling with engine-like temperatures", Conf, International Gas Turbine Institute, Denmark, pp. 311-322, (2012).
15. Elebiary, K. and Taslim, M.E., "Experimental/ Numerical crossover jet impingement in an airfoil leading edge cooling channel", Journal of Turbomachinery, Vol. 135, (2013).
16. Yang, Y.T., Wei, T.C. and Wang, Y.H., "Numerical study of turbulent slot jet impingement cooling on a semi-circular concave surface", International Journal of Heat and Mass Transfer, Vol. 54, pp. 482-489, (2011).
17. Xie, Y., Li, P., Lan, J. and Zhang, D., "Flow and heat transfer characteristics of single jet impinging on dimpled surface", Journal Heat Transfer, Vol. 135, (2013).
18. Yang, L., Ren, J., Jiang, H. and Ligrani, P., "Experimental and numerical investigation of unsteady impingement cooling within a blade leading edge passage", International Journal of Heat and Mass Transfer, Vol. 71, pp. 57-68, (2014).
19. ANSYS FLUENT 14.0, User's Guide, ANSYS Inc, (2014).
20. Imbriale, M., Laniro, A., Meola, C. and Cardone, G., "Convective heat transfer by a row of jets impinging on a concave surface", International Journal of Thermal Science. Vol. 75, pp. 153-163, (2014).
21. Caliskan, S., Baskaya, S. and Calisir, T., "Experimental and numerical investigation of geometry effects on multiple impinging air jets", International Journal of Heat and Mass Transfer. Vol. 75, pp. 685-703, (2014).
22. Menter, F. R., "Two equation eddy-viscosity turbulence models for engineering application", AIAA Journal, Vol. 32, No. 8, pp. 269-289, (1994).
23. Chang, K., Hsieh, W. and Chen, C., "Modified Low-Reynolds- Number Turbulence Model Appilication to Recirculating flow in pipe expansion", Journal Fluid Eng, Vol. 117, PP. 417-423, (1995).
24. Yap, C. R., "Turbulent heat and momentum transfer in recirculation and impinging flows", Ph. D. thesis, University of Manchester institute of science technology, Manchester, UK, (1987).
25. Ahmadi, H., Rajabi-Zargarabadi, M., Mujumdar, A.S. and Mohammadpour, J., "Numerical Modeling of a Turbulent Semi-Confined Slot Jet Impinging on a Concave Surface", Thermal Science, Vol. 19, pp. 129-140, (2015).
26. Wang, S.J. and Mujumdar, A.S., "A comparative study of five low Reynolds number k–ε models for impingement heat transfer", Journal of Applied Thermal Engineering, Vol. 25, pp. 31-44, (2005).
27. Hosseinalipour, S.M. and Mujumdar, A.S., "Comparative evaluation of different turbulence models for confined impinging and opposing jet flows", Numerical Heat Transfer, Vol. 28, pp. 647-666, (1995).
28. Thomann, H., "Effect of streamwise wall curvature on heat transfer in a turbulent boundary layer", Journal of Fluid Mech, Vol. 33, pp. 283-292, (1968).
29. Schlichting, H., "Boundary layer theory", 7th ed, McGraw-Hill, New York, (1979).
30. Goldstein, R.J. and Seol, W.S., "Heat transfer to a row of impinging circular air jets including the effect of entrainment", International Journal of Heat and Mass Transfer, Vol. 34, pp. 2133-2147, (1991).
31. Gilard, V. and Brizzi, L.–E., "Slot jet impinging on a concave curved wall", Journal of Fluid Engineering, Vol. 127, pp. 595-603, (2005).
32. Lee, J. and Lee, S.J., "Stagnation region heat transfer of a turbulent axisymmetric jet impingement", Experimental Heat Transfer, Vol. 12, pp. 137-156, (1990).
CAPTCHA Image