مقایسۀ عددی مشخصه های ترمو هیدرولیک سمت پوستۀ مبدل های حرارتی پوسته-لوله با بفل تری فویل و بفل قطاعی به وسیلۀ الگوریتم ژنتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعت نفت، آبادان، ایران.

2 شرکت نفت و گاز اروندان منطقه آزاد اروند ایران

چکیده

در این مقاله به مطالعۀ  تاثیر استفاده از بفل­های تری‌فویل و قطاعی بر انتقال حرارت و افت فشار سمت پوستۀ مبدل­­های حرارتی پوسته – لوله پرداخته می­شود. بفل­ها در پوسته مبدل­های حرارتی پوسته - لوله برای افزایش ضریب انتقال حرارت، تکیه‌گاه لوله­ها، تعیین الگوی جریان، استحکام ساختاری و جلوگیری از ارتعاش، به کار می­روند. با استفاده از الگوریتم ژنتیک در شرایط یکسان، تابع­های انتقال حرارت و افت فشار بفل­ها به‌صورت تک هدفه و چند هدفه  بهینه‌سازی می­شوند. مبدل حرارتی با بفل تری‌فویل به وسیلۀ نرم افزار انسیس فلوئنت شبیه‌سازی می­شود. نتایج نشان می­دهد که بفل تری‌فویل ضریب انتقال حرارت را با افت فشار بیشتری، افزایش می­دهد. ظرفیت انتقال حرارت بفل تری‌فویل نسبت به بفل قطاعی در وضعیت بیشینۀ حاصل شده از الگوریتم ژنتیک تک هدفه در آرایش مربع  19.944% و برای آرایش مثلث 16.25% بیشتر شده است، این در حالی است که افت فشار برای چیدمان مربع دستۀ لوله‌ها  3.2 برابر و برای چیدمان مثلث دستۀ لوله‌ها 2.075 برابر نسبت به بفل قطاعی بیشتر شده است.جریان‌های جت ایجاد شده در منفذهای تری‌فویل عملکرد انتقال حرارت مبدل حرارتی را افزایش می‌دهد و محصولات خوردگی و رسوبات شیمیایی دستۀ لوله‌ها را کاهش می‌دهد و باعث بهبود شرایط خوردگی مبدل حرارتی پوسته-لوله با بفل منفذدار تری‌فویل شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical comparison of shell side thermo-hydraulic characteristics of shell and tube heat exchangers with trefoil and segmental baffle by genetic algorithm

نویسندگان [English]

  • Hadi Eskandari 1
  • Seyed iman Hashemi marghmaleki 2
1 Petroleum university of technology, Abadan, Iran,
2 Master of Arvandan Oil and Gas Company, Arvand Free Zone, Iran
چکیده [English]

: In this paper, the effect of using trefoil and segmental baffles on heat transfer and pressure drop towards the shell of shell and tube heat exchangers is studied. Baffles are used in shell and tube heat exchangers to increase heat transfer coefficient, pipe support, flow pattern determination, structural strength and vibration prevention. Using the genetic algorithm under the same conditions, the heat transfer and pressure drop functions of the baffles are optimized as single-objective and multi-objective. The heat exchanger with the trefoil baffles is simulated by Aansys fluent software. The results show that in trefoil baffles, increasing the heat transfer coefficient will be accompanied by a greater pressure drop. The heat transfer capacity of the trefoil baffle has increased by 19.944% in the square arrangement and 16.25% in the triangle arrangement compared to the segmental baffle in the maximum state obtained from the single-objective genetic algorithm, while the pressure drop for the square arrangement of the tube bundle is 3.2 times and for the triangle arrangement tube bundle has increased 2.075 times compared to the segmental baffle. The jet fluid flow created in the trefoil perforated increase the heat transfer performance and the corrosion products and chemical sediments are reduced, which also improves the corrosion conditions of the shell and tube heat exchanger with the trefoil perforated plate.

کلیدواژه‌ها [English]

  • Trefoil baffle"
  • Segmental Baffle"
  • Shell and Tube Heat Exchanger"
  • Thermo-hydraulic"
  • Genetic Algorithm
  • Optimization"
  • "
  • 3D simulation"
[1]Kakac, Heat Exchangers Selection and Thermal Design, Ed. Miami Gables: Florida University. (2002).
[2] S. Kotian, N. Methekar, N. Jain, P. Vartak and P. Naik, “Colburn vs Bell Delaware approach for evaluation of thermo hydraulic performance of a shell and tube heat exchanger” a theoretical study, 1st International Conference on Computations in Materials and Applied Engineering, (2021).
[3] Z. Sui, J. Yang, Y. Yao and X-Y Zhang, “Numerical investigation of the thermal-hydraulic characteristics of AP1000 steam generator U-tubes”, International Journal of Advanced Nuclear Reactor Design and Technology, vol. 2, pp. 52-59, (2020).
[4] O. D. Lara-Montano, F.I. Gomez-Castro and C. Cutierrez-Antonio, “Comparison of the performance of different metaheuristic methods for the optimization of shell-and-tube heat exchangers”, Computers and Chemical Engineering, vol. 152, pp.1-17, (2021).
[5] E.M.S. El-said, A.H. Elsheikh and H.R. El-Tahan, “Effect of curved segmental baffle on a shell and tube heat exchanger thermo hydraulic performance: Numerical investigation”, International Journal of Thermal Sciences, vol. 165, pp. 1-13, (2021).
[6] T. Cong, R. Zhang, W. Tian, G.H. Su and S. Qiu, “Analysis of Westinghouse MB2 test using the Steam-generator Thermo hydraulics Analysis code STAF”, Annals of Nuclear Energy, vol. 85, pp. 127-136, (2015).
[7] A.S. Ambekar, R. Sivakumar, N. Anantharaman and M. Vivekenandan, “CFD simulation study of shell and tube heat exchangers with different baffle segment configurations”, Applied Thermal Engineering, vol. 108, pp. 999-1007, (2016).
[8] H. Uosofvand and A.A. Abbasian Arani, “Shell and tube heat exchanger’s performance improvement employing hybrid segmental–helical baffles and ribbed tubes combination”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43 (399), pp. 1-15, (2021).
[9] D. Wang, K. Wang, Y. Wang, C. Bai and M. Liu, “Numerical and Experimental Investigation of the Shell Side Characteristics of the Trefoil-Hole Baffle Heat Exchanger”, Heat Transfer Research, vol. 48, pp. 81-95, (2017).
[10] A.E. Maakoul, A. Laknizi, S. Saadeddine, M.E. Metoui, A. Zaite, M. Meziane and A.B. Abdellah, “Numerical comparison of shell-side performance for shell and tube heat exchangers with trefoil-hole, helical and segmental baffles”, Applied Thermal Engineering, vol. 109, pp. 175-185, (2016).
[11] Y. Sun, X. Wang, R. Long, F. Yuan and K. yang “Numerical Investigation and Optimization on Shell Side Performance of A Shell and Tube Heat Exchanger with Inclined Trefoil-Hole Baffles”, Energies, 12(21), 4138, (2019).
[12] S. Wang, J. Xiao, J. Wang, G. Jian, J. Wen and Z. Zhang, ”Configuration optimization of shell-and-tube heat exchangers with helical baffles using multi- Objective genetic algorithm based on fluid-structure interaction”, International Communications in Heat and Mass Transfer, vol. 85, pp. 62-69, (2017).
[13] X. Zhang, D. Han, W. He and C. Yue, “Numerical simulation on a novel shell-and-tube heat exchanger with screw cinquefoil orifice baffles”, Advances in Mechanical Engineering, vol. 9(8), pp 1-12, (2017).
[14] Z. Xu, Y. Guo, H. Mao and F. Yang, “Configuration Optimization and Performance Comparison of STHX-DDB and STHX-SB by A Multi-Objective Genetic Algorithm”, Energies, 12(9), 1794, (2019).
[15] S. Jena, P. Patro and S.S. Behera, “Multi-Objective Optimization of Design Parameters of a Shell &Tube type Heat Exchanger using Genetic Algorithm”, International Journal of Current Engineering and Technology , vol. 3, no. 4, (2013).
[16] S. Sanaye and H. Hajabdollahi, “Multi-objective optimization of shell and tube heat exchangers”, Applied Thermal Engineering, vol. 30, pp. 1937-1945, (2010).
 [17] H. Bayram and G. Sevilgen, “Numerical Investigation of the Effect of Variable Baffle Spacing on the Thermal Performance of a Shell and Tube Heat Exchanger”, Energies, 10(12), 2181, (2017).
[18] T. Du and W. Du, “Characteristics of flow and heat transfer of shell-and-tube heat exchangers with overlapped helical baffles”, Frontiers of Engineering Management, vol. 6(1), pp. 70–77, (2019).
 [19] L. Ma, K. Wang, M. Liu, D. Wang, T. Liu, Y. Wang and Z. Liu “Numerical study on performances of shell-side in trefoil-hole and quatrefoil hole baffle heat exchangers”, Applied Thermal Engineering, vol. 123, pp. 1444-1455, (2017).
 [20] D. Wang, H. Wang, J. Xing and Y. Wang “Investigation of the thermal-hydraulic characteristics in the shell side of heat exchanger with quatrefoil perforated plate”, International Journal of Thermal Sciences, vol. 159, 106580, (2021).
 
 
CAPTCHA Image