Umerical Simulation of Elbow Erosion with Circumferential Welding in Two-Phase Gas Flow

Document Type : Original Article

Authors

1 Department of mechanical engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

2 Aerospace and energy conversion Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

3 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran.

4 National Iranian Gas Company, Isfahan Province Gas Company, Isfahan, Iran.

Abstract

The initial processes that take place in the operating facilities of the pressure reduction station on natural gas do not remove all its pollutants, whether moisture or solid particles. Under such conditions, corrosion in pipelines, blockage of instrumentation equipment, and destruction of valves and regulators will be intensified, so it is necessary at distribution and pressure reduction stations to prevent gas pressure drop and damage to pipeline equipment, processes to separate solid particles. And liquefied droplets of natural gas. This report first defines natural gas flow erosion and then briefly describes the flow erosion using the Discrete Phase Method DPM and the Eulerian-Lagrangian biphasic flow, or the discrete phase abbreviated simulation using Ansys Fluent 2019R1 software. The gas-solid in the elbow deals with the welding of this elbow joint. This report describes the discrete and continuous phase flow equations. In this regard, to consider the perturbation effects of the energy-perturbation loss model (Realizable k- ), to model the behavior of particles in the vicinity of the wall and also the scattering of particles due to perturbation in the fluid phase is modeled using random tracing model. . The boundary conditions of solid particles colliding with the wall and the steps of numerical solution of the equations in the discrete phase method are explained and the present effect investigates the erosive corrosion. The results show that even in slow currents with low Reynolds number, the gas-solid fluid is heterogeneous, and increasing the diameter of the solid particles increases the heterogeneity of the gas-solid flow and ultimately causes more abrasion corrosion at the weld roughness.

Keywords


. ابراهیم، محسنی هماگرانی، عبدالرسول، محسنی هماگرانی، "تفسیر فیلم های رادیوگرافی صنعتی"، انتشارات سنجش سپاهان، اصفهان، (1388).
2. حسین،عسگری، "خوردگی در پالایشگاه­ها"، دپارتمان تحقیق و توسعه شرکت آذر انرژی تبریز، انتشارات شرکت آذرانرژی تبریز، تبریز، (1389).
3. جعفر، زکی زاده، "شناخت لوله واتصالات"، اداره تحقیقات بازرگانی و پیمانکاری، امور خدمات فنی و تخصیص کالا، تهران، (1384).
4. ابراهیم، خیر، "مرجع مکانیزم­های تخریب تجهیزات فرآیندی در صنایع نفت، گاز، پالایشی و پتروشیمی"، جلد اول، مکانیزم های تخریب مشترک، انتشارات راز نهان، تهران، (1392).
5. Crook., "Practical guide to wear for corrosion engineers", (1991)
6. Veritas D. N., "Recommended Practice RP (501 Erosive Wear in Piping Systems", Technical report, DNV RP 0501-Revision 4.2, pp. 1-111 & pp. 1-39, (2007).
7. شرکت گاز اصفهان، "اسناد و مستندات بازرسی فنی از ایستگاه تقلیل فشار مبارکه"، شرکت گاز اصفهان، اصفهان،(1398).
8. Finnie. I., "Erosion of metal by solid particles", Journal of Wear, Vol. 3, pp. 87-103, (1967).
9. Chen. X. H., McLury. B. S., Shirazi. S. A., "Application and experimental validation of a computational fluid dynmics (CFD)-based erosion prediction model in elbows and plugged tees", Journal of Computers & Fluids, Vol. 33, pp. 1251-1272, (2004).
10. Xionga. Z., Ji, Zhong. L., Xiaolin. Wu., Youfang. C., Hongsheng. C., "Experimental and numerical simulation Investigations on particle sampling for high-pressure natural gas", Journal of Fuel, Vol. 87, pp. 3096-3104, (2008).
11., Kamyar. N., Mclaury. S., Shirazi. B., Siamack. L., Hill. A., Cremaschi. S., "A generalized model to predict minimum particle transport velocities in multiphase air-water horizontal pipes", AIChE Journal, Volume 61, (2015).
12. Oka. Y. I., Okamura. K., Yoshida. T., "Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation", Journal of Wear, Vol. 259, No. 1, pp. 95-101, (2005).
13. Grant. G., Tabakoff. W., "Erosion prediction in turbomachinery resulting from environmental solid particles", Journal of Aircraft. Vol. 12, No. 5, pp. 471-478, (1975).
14. داوود، شفیعی، کوروش، خورشیدی، مصطفی، مروجی، "تحلیل عددی ایجاد سایش ناشی از جریان گاز در خطوط لوله وایستگاه‌های گاز"، مجله پژوهش نفت، شماره 78، تهران، (1393).
15. Siyamac. P., H., Agrawal. M., Snirivasan. V., Roland. E. V., Carlos. T., Laury. B. S. Mc., Siyamac. S., "CFD Simulation of Sand Particles Erosion in gas-dominant multiphase flow", DNV GL. Katy TX.USA, BP Hoston. TX. USA, ANSYS Inc. Hoston. TX. USA, Erosion / Corrosion Center. Thermal Sience Department, the University of Los Andes. Merida 5101.Venzuela, (2015).
16. Duarte. C. A. R., De Souza. F.J., Dos Santas V. F., "Numerical Investigation of mass loading Effects on Elbow Erosion", Journal of Powder Technol, Vol. 283, pp. 593-606, (2015).
17. Arabnejad .H, Mansouri. A., Shirazi. S. A., Mclaury. B. S., "Development of mechanistic erosion equation for solid particles", Wear, pp. 332-333 & 1044 -1050, (2015).
18.  Vieira.R.E., Parsi. M., Kesana. N., Maclaury. B. S., Shirazi. S. A., "Ultrasonic Measurments of sand particle erosion in gas dominant multiphase churn flow in vertical pipes", Journal of Wear, pp. 332-333 & 1044 -1050, (2015).
19. Okonkwo, C. P., Mohamed, A. M., "Erosion –Corrosion in oil and Gas Industry A Review", International Journal of Metallurgical & Materials Science and Engineering (IJMMSE), Vol. 4, (2014).
20. مرتضی، یاره، افشین، احمدی ندوشن، مریم، حسن زاده سورنجانی،"شبیه‌سازی عددی خوردگی سایشی در یک خط لوله جریان گاز"، اولین کنفرانس بین‌المللی مهندسی مکانیک و هوا فضا،(2016).
 
21. Zamani. M., Seddighi. S., Nazifi. H. R., "Erosion of natural gas elbows due to rotating particles in turbulent gas-solid flow", Journal of Natural Gas Science and Engineering, (2017).
22. داریوش، مولا، جعفر، قاجار، نادر، سلیمی، "روش بهینه سیستم فیلتراسیون گاز طبیعی در ایستگاه­های تقلیل فشار گاز"، شرکت گاز استان فارس، (1385).
23. "Low-Dimensional Systems and Nanostructures", Report No. 93, pp. 179-189., (2017)
24. "International Journal of Mechanical Sciences", Report No. 131, pp. 1106-1116., (2017).
25. "journal of Thermal Analysis and Calorimetry", Report No. 132, pp. 741-759., (2018).
26. "Low-Dimensional Systems and Nanostructures", Report No. 96, pp. 73-84., (2018).
27. "Low-dimensional Systems and Nanostructures", Report No. 84, pp. 454-465., (2016).
28. "Journal of Thermal Analysis and Calorimetry", Report No. 135(6), pp. 3471-3483., (2019).
29. "Low-dimensional Systems and Nanostructures", Report No. 84, pp. 454-465., (2019).
30. ASME B31.3., "Process Piping Code and Welding", ASME Center., (2016).
CAPTCHA Image